173 research outputs found

    Aryl Hydrocarbon Receptor–Independent Toxicity of Weathered Crude Oil during Fish Development

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs), derived largely from fossil fuels and their combustion, are pervasive contaminants in rivers, lakes, and nearshore marine habitats. Studies after the Exxon Valdez oil spill demonstrated that fish embryos exposed to low levels of PAHs in weathered crude oil develop a syndrome of edema and craniofacial and body axis defects. Although mechanisms leading to these defects are poorly understood, it is widely held that PAH toxicity is linked to aryl hydrocarbon receptor (AhR) binding and cytochrome P450 1A (CYP1A) induction. Using zebrafish embryos, we show that the weathered crude oil syndrome is distinct from the well-characterized AhR-dependent effects of dioxin toxicity. Blockade of AhR pathway components with antisense morpholino oligonucleotides demonstrated that the key developmental defects induced by weathered crude oil exposure are mediated by low-molecular-weight tricyclic PAHs through AhR-independent disruption of cardiovascular function and morphogenesis. These findings have multiple implications for the assessment of PAH impacts on coastal habitats

    ICDP workshop on the Deep Drilling in the Turkana Basin Project:Exploring the link between environmental factors and hominin evolution over the past 4 Myr

    Get PDF
    Scientific drill cores provide unique windows into the processes of the past and present. In the dynamic tectonic, environmental, climatic, and ecological setting that is eastern Africa, records recovered through scientific drilling enable us to look at change through time in unprecedented ways. Cores from the East African Rift System can provide valuable information about the context in which hominins evolved in one of the key regions of hominin evolution over the past 4 Myr. The Deep Drilling in the Turkana Basin (DDTB) project seeks to explore the impact of several types of evolution (tectonic, climatic, biological) on ecosystems and environments. This includes addressing questions regarding the region’s complex and interrelated rifting and magmatic history, as well as understanding processes of sedimentation and associated hydrothermal systems within the East African Rift System. We seek to determine the relative impacts of tectonic and climatic evolution on eastern African ecosystems. We ask, what role (if any) did climate change play in the evolution of hominins? How can our understanding of past environmental change guide our planning for a future shaped by anthropogenic climate change? To organize the scientific community’s goals for deep coring in the Turkana Basin, we hosted a 4-day ICDP supported workshop in Nairobi, Kenya in July 2022. The team focused on how a 4 Myr sedimentary core from the Turkana Basin will uniquely address key scientific research objectives related to basin evolution, paleoclimate, paleoenvironment, and modern resources. Participants also discussed how DDTB could collaborate with community partners in the Turkana Basin, particularly around the themes of access to water and education. The team concluded that collecting the proposed Pliocene to modern record is best accomplished through a 2-phase drilling project with a land-based transect of four cores spanning the interval from 4 Ma to Middle/Late Pleistocene (<0.7 Ma) and a lake-based core targeting the interval from ~1 Ma to present. The second phase, while logistically more challenging due to the lack of drilling infrastructure currently on Lake Turkana, would revolutionize our understanding of a significant interval in the evolution and migration of Homo sapiens for a time period not currently accessible from the Kenyan part of the Turkana Basin. Collectively, the DDTB project will provide exceptional tectonic and climatic data directly associated with one of the world’s richest hominin fossil localities

    ICDP workshop on the Deep Drilling in the Turkana Basin Project:Exploring the link between environmental factors and hominin evolution over the past 4 Myr

    Get PDF
    Scientific drill cores provide unique windows into the processes of the past and present. In the dynamic tectonic, environmental, climatic, and ecological setting that is eastern Africa, records recovered through scientific drilling enable us to look at change through time in unprecedented ways. Cores from the East African Rift System can provide valuable information about the context in which hominins evolved in one of the key regions of hominin evolution over the past 4 Myr. The Deep Drilling in the Turkana Basin (DDTB) project seeks to explore the impact of several types of evolution (tectonic, climatic, biological) on ecosystems and environments. This includes addressing questions regarding the region’s complex and interrelated rifting and magmatic history, as well as understanding processes of sedimentation and associated hydrothermal systems within the East African Rift System. We seek to determine the relative impacts of tectonic and climatic evolution on eastern African ecosystems. We ask, what role (if any) did climate change play in the evolution of hominins? How can our understanding of past environmental change guide our planning for a future shaped by anthropogenic climate change? To organize the scientific community’s goals for deep coring in the Turkana Basin, we hosted a 4-day ICDP supported workshop in Nairobi, Kenya in July 2022. The team focused on how a 4 Myr sedimentary core from the Turkana Basin will uniquely address key scientific research objectives related to basin evolution, paleoclimate, paleoenvironment, and modern resources. Participants also discussed how DDTB could collaborate with community partners in the Turkana Basin, particularly around the themes of access to water and education. The team concluded that collecting the proposed Pliocene to modern record is best accomplished through a 2-phase drilling project with a land-based transect of four cores spanning the interval from 4 Ma to Middle/Late Pleistocene (<0.7 Ma) and a lake-based core targeting the interval from ~1 Ma to present. The second phase, while logistically more challenging due to the lack of drilling infrastructure currently on Lake Turkana, would revolutionize our understanding of a significant interval in the evolution and migration of Homo sapiens for a time period not currently accessible from the Kenyan part of the Turkana Basin. Collectively, the DDTB project will provide exceptional tectonic and climatic data directly associated with one of the world’s richest hominin fossil localities

    A Correlation Between Circumstellar Disks and Rotation in the Upper Scorpius OB Association

    Full text link
    We present projected rotational velocities for 20 early-type (B8-A9) and 74 late-type (F2-M8) members of the ~5 Myr old Upper Scorpius OB Association derived from high dispersion optical spectra obtained with the High Resolution Echelle Spectrometer (HIRES) on Keck I and the Magellan Inamori Kyocera Echelle (MIKE) on the Magellan Clay telescope. The spectroscopic sample is composed of stars and brown dwarfs with infrared signatures of circumstellar disks, both primordial and debris, and non-excess sources of comparable spectral type. We merge projected rotational velocities, accretion diagnostics, and Spitzer Space Telescope Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) 24 micron photometry to examine the relationship between rotation and circumstellar disks. The rotational velocities are strongly correlated with spectral type, a proxy for mass, such that the median vsini for B8-A9 type stars is: 195(+/-)70 km/s, F2-K4: 37.8(+/-)7.4 km/s, K5-K9: 13.8(+21.3/-8.2) km/s, M0-M5: 16.52(+/-)5.3 km/s, and M5.5-M8: 17.72(+/-)8.1 km/s. We find with a probability of >0.99 that M-type stars and brown dwarfs having infrared excess suggestive of circumstellar disks rotate more slowly than their non-excess counterparts. A similar correlation is present among F2-K9 type stars, but only at the ~97% confidence level. Among the early-type (B8-A9) members, rotational velocities of the debris-disk and non-disk populations are indistinguishable. Considering the late-type (F2-M8) stars and brown dwarfs, we find a low fraction of slowly rotating, non-excess sources relative to younger star forming regions, suggesting that most have spun up following disk dissipation. The few late-type (F2-M5) debris disk sources, which may be representative of stars that have recently dispersed their inner disks, are evenly divided between slow and moderate rotators.Comment: 41 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Puget Sound Federal Task Force: Coordinating, leveraging and prioritizing diverse federal programs toward a healthy and sustainable Puget Sound

    Get PDF
    The Puget Sound Federal Task Force (PSFTF) panel at the 2022 Salish Sea Ecosystem Conference will include presentations and an opportunity for discussion on current priority U.S. federal actions to protect and restore Puget Sound. PSFTF Co-chairs will provide an overview, including the role and relationship to treaty protected rights and resources. PSFTF Subteam Leads will highlight federal work on cross-cutting actions; fish passage; nearshore and shorelines; floodplains, riparian habitat, and estuaries; shellfish; stormwater; and science and monitoring. As background, with the Puget Sound Congressional delegation, Puget Sound Partnership, tribes and others recognizing that formal program and budget coordination at the federal level was needed to effectively protect and restore Puget Sound and Treaty protected resources, the White House Council on the Environmental Quality led nine federal Cabinet Secretaries and agency directors to sign a Memorandum of Understanding (MOU) forming the PSFTF. The MOU, signed in November 2016, outlines the structure of the PSFTF and the charge to PSFTF agencies to develop Action Plans on a rolling 5-year basis. The PSFTF is comprised of 13 federal agencies and co-chaired by EPA and NOAA. The PSFTF MOU, Action Plans and Progress Reports are available online at: https://www.epa.gov/puget-sound/puget-sound-federal-task-forc

    Cytopathic effects of the cytomegalovirus-encoded apoptosis inhibitory protein vMIA

    Get PDF
    Replication of human cytomegalovirus (CMV) requires the expression of the viral mitochondria–localized inhibitor of apoptosis (vMIA). vMIA inhibits apoptosis by recruiting Bax to mitochondria, resulting in its neutralization. We show that vMIA decreases cell size, reduces actin polymerization, and induces cell rounding. As compared with vMIA-expressing CMV, vMIA-deficient CMV, which replicates in fibroblasts expressing the adenoviral apoptosis suppressor E1B19K, induces less cytopathic effects. These vMIA effects can be separated from its cell death–inhibitory function because vMIA modulates cellular morphology in Bax-deficient cells. Expression of vMIA coincided with a reduction in the cellular adenosine triphosphate (ATP) level. vMIA selectively inhibited one component of the ATP synthasome, namely, the mitochondrial phosphate carrier. Exposure of cells to inhibitors of oxidative phosphorylation produced similar effects, such as an ATP level reduced by 30%, smaller cell size, and deficient actin polymerization. Similarly, knockdown of the phosphate carrier reduced cell size. Our data suggest that the cytopathic effect of CMV can be explained by vMIA effects on mitochondrial bioenergetics

    Crop Updates - 2009 Katanning

    Get PDF
    This session covers seventeen papers from different authors GM canola – How will it affect the way I farm? Murray Scholz, 2008 Nuffield scholar, Southern NSW Eight years of IWM smashes tyegrass seed banks by 98% over 31 focus paddocks, Peter Newman, Glenn Adam & Trevor Bell, Department of Agriculture and Food The global economic climate and impacts on agriculture, profile on Michael Whitehead Rabobank New York Lessons from five years of cropping systems research, W.K. Anderson, Department of Agriculture and Food Case study of a 17year old agricultural lime trial, C. Gazey, Department of Agriculture and Food, J. Andrew, Precision SoilTech and R. Pearce, ConsultAg Fertilising in a changing price environment, Bill Bowden, Wayne Pluske and Jeremy Lemon, Department of Agriculture and Food Fact or Fiction: Who is telling the truth and how to tell the difference? D.C. Edmeades, agKnowledge Ltd, Hamilton Forecast disease resistance profile for the Western Australian barley crop over the next three years, JJ Russell, Department of Agriculture and Food Malting barley varieties differ in their flowering date and their response to change in sowing date, BH Paynter and JJ Russell, Department of Agriculture and Food Decimating weed seed banks within non-crop phases for the benefit of subsequent crops, Dr Davis Ferris, Department of Agriculture and Food Autumn cleaning yellow serradella pastures with broad spectrum herbicides – a novel weed control strategy that exploits delayed germination, Dr Davis Ferris, Department of Agriculture and Food Emerging weeds in changing farming systems, Dr Abul Hashen, Department of Agriculture and Food More glyphosate-resistant annual ryegrass populations within Western Australia, Dr Abul Hashem and Dr Catherine Borger, Department of Agriculture and Food Reasons to use only the full label herbicide rate, Stephen B. Powels, Qin Yu, Mechelle Owen, Roberto Busi, Sudheesh Manalil, University of Western Australia Flaxleaf fleabane – coming to a property near you! Sally Peltzer, Department of Agriculture and Food Glyphosate – the consequences of cutting rates! Sally Peltzer and David Minkey, Department of Agriculture and Food Benefits of crop rotations/break crops in managing soil moisture, soil health, weeds and disease – an overview, Raj Malik, Department of Agriculture and Foo

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software
    corecore