14 research outputs found

    Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras

    Get PDF
    A geologically rapid Neoproterozoic oxygenation event is commonly linked to the appearance of marine animal groups in the fossil record. However, there is still debate about what evidence from the sedimentary geochemical record—if any—provides strong support for a persistent shift in surface oxygen immediately preceding the rise of animals. We present statistical learning analyses of a large dataset of geochemical data and associated geological context from the Neoproterozoic and Palaeozoic sedimentary record and then use Earth system modelling to link trends in redox-sensitive trace metal and organic carbon concentrations to the oxygenation of Earth’s oceans and atmosphere. We do not find evidence for the wholesale oxygenation of Earth’s oceans in the late Neoproterozoic era. We do, however, reconstruct a moderate long-term increase in atmospheric oxygen and marine productivity. These changes to the Earth system would have increased dissolved oxygen and food supply in shallow-water habitats during the broad interval of geologic time in which the major animal groups first radiated. This approach provides some of the most direct evidence for potential physiological drivers of the Cambrian radiation, while highlighting the importance of later Palaeozoic oxygenation in the evolution of the modern Earth system

    NRF2 Promotes Tumor Maintenance by Modulating mRNA Translation in Pancreatic Cancer

    No full text
    Summary Pancreatic cancer is a deadly malignancy that lacks effective therapeutics. We previously reported that oncogenic Kras induced the redox master regulator Nfe2l2/Nrf2 to stimulate pancreatic and lung cancer initiation. Here, we show that NRF2 is necessary to maintain pancreatic cancer proliferation by regulating mRNA translation. Specifically, loss of NRF2 led to defects in autocrine epidermal growth factor receptor (EGFR) signaling and oxidation of specific translational regulatory proteins, resulting in impaired cap-dependent and cap-independent mRNA translation in pancreatic cancer cells. Combined targeting of the EGFR effector AKT and the glutathione antioxidant pathway mimicked Nrf2 ablation to potently inhibit pancreatic cancer ex vivo and in vivo, representing a promising synthetic lethal strategy for treating the disease

    Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras

    No full text
    International audienceA geologically rapid Neoproterozoic oxygenation event is commonly linked to the appearance of marine animal groups in the fossil record. However, there is still debate about what evidence from the sedimentary geochemical record—if any—provides strong support for a persistent shift in surface oxygen immediately preceding the rise of animals. We present statistical learning analyses of a large dataset of geochemical data and associated geological context from the Neoproterozoic and Palaeozoic sedimentary record and then use Earth system modelling to link trends in redox-sensitive trace metal and organic carbon concentrations to the oxygenation of Earth’s oceans and atmosphere. We do not find evidence for the wholesale oxygenation of Earth’s oceans in the late Neoproterozoic era. We do, however, reconstruct a moderate long-term increase in atmospheric oxygen and marine productivity. These changes to the Earth system would have increased dissolved oxygen and food supply in shallow-water habitats during the broad interval of geologic time in which the major animal groups first radiated. This approach provides some of the most direct evidence for potential physiological drivers of the Cambrian radiation, while highlighting the importance of later Palaeozoic oxygenation in the evolution of the modern Earth system

    The Sedimentary Geochemistry and Paleoenvironments project

    No full text

    The Sedimentary Geochemistry and Paleoenvironments Project.

    Get PDF
    Authors thank the donors of The American Chemical Society Petroleum Research Fund for partial support of SGP website development (61017-ND2). EAS is funded by National Science Foundation grant (NSF) EAR-1922966. BGS authors (JE, PW) publish with permission of the Executive Director of the British Geological Survey, UKRI.Publisher PDFPeer reviewe
    corecore