1,674 research outputs found

    Searching in HI for Massive Low Surface Brightness Galaxies: Samples from HyperLeda and the UGC

    Full text link
    A search has been made for 21 cm HI line emission in a total of 350 unique galaxies from two samples whose optical properties indicate they may be massive The first consists of 241 low surface brightness (LSB) galaxies of morphological type Sb and later selected from the HyperLeda database and the the second consists of 119 LSB galaxies from the UGC with morphological types Sd-m and later. Of the 350 unique galaxies, 239 were observed at the Nancay Radio Telescope, 161 at the Green Bank Telescope, and 66 at the Arecibo telescope. A total of 295 (84.3%) were detected, of which 253 (72.3%) appear to be uncontaminated by any other galaxies within the telescope beam. Finally, of the total detected, uncontaminated galaxies, at least 31 appear to be massive LSB galaxies, with a total HI mass ≄\ge 1010^{10} Msol_{sol}, for H0_0 = 70 km/s/Mpc. If we expand the definition to also include galaxies with significant total (rather than just gas) mass, i.e., those with inclination-corrected HI line width W50_{50},cor > 500 km/s, this bring the total number of massive LSB galaxies to 41. There are no obvious trends between the various measured global galaxy properties, particularly between mean surface brightness and galaxy mass.Comment: 71 pages, including all tables and figures; Accepted by A

    Mechanisms of Improved Exercise Performance under Hyperoxia

    Full text link
    BACKGROUND The impact of hyperoxia on exercise limitation is still incompletely understood. OBJECTIVES We investigated to which extent breathing hyperoxia enhances the exercise performance of healthy subjects and which physiologic mechanisms are involved. METHODS A total of 32 healthy volunteers (43 ± 15 years, 12 women) performed 4 bicycle exercise tests to exhaustion with ramp and constant-load protocols (at 75% of the maximal workload [Wmax] on FiO2 0.21) on separate occasions while breathing ambient (FiO2 0.21) or oxygen-enriched air (FiO2 0.50) in a random, blinded order. Workload, endurance, gas exchange, pulse oximetry (SpO2), and cerebral (CTO) and quadriceps muscle tissue oxygenation (QMTO) were measured. RESULTS During the final 15 s of ramp exercising with FiO2 0.50, Wmax (mean ± SD 270 ± 80 W), SpO2 (99 ± 1%), and CTO (67 ± 9%) were higher and the Borg CR10 Scale dyspnea score was lower (4.8 ± 2.2) than the corresponding values with FiO2 0.21 (Wmax 257 ± 76 W, SpO2 96 ± 3%, CTO 61 ± 9%, and Borg CR10 Scale dyspnea score 5.7 ± 2.6, p < 0.05, all comparisons). In constant-load exercising with FiO2 0.50, endurance was longer than with FiO2 0.21 (16 min 22 s ± 7 min 39 s vs. 10 min 47 s ± 5 min 58 s). With FiO2 0.50, SpO2 (99 ± 0%) and QMTO (69 ± 8%) were higher than the corresponding isotime values to end-exercise with FiO2 0.21 (SpO2 96 ± 4%, QMTO 66 ± 9%), while minute ventilation was lower in hyperoxia (82 ± 18 vs. 93 ± 23 L/min, p < 0.05, all comparisons). CONCLUSION In healthy subjects, hyperoxia increased maximal power output and endurance. It improved arterial, cerebral, and muscle tissue oxygenation, while minute ventilation and dyspnea perception were reduced. The findings suggest that hyperoxia enhanced cycling performance through a more efficient pulmonary gas exchange and a greater availability of oxygen to muscles and the brain (cerebral motor and sensory neurons)

    Compete or rest? Willingness to compete hurt among adolescent elite athletes

    Get PDF
    Objective Training and competing despite underlying health problems is a common social practice in sport. Adolescent elite athletes are particularly vulnerable to possible health consequences of this risky behavior due to their very sensitive developmental stage. Conceptualizing this phenomenon of playing hurt as sickness presenteeism, and taking the concept of absence/presence legitimacy into account, this paper analyzes the propensity of adolescent elite athletes to compete in the face of health problems. The central aim is to empirically identify characteristics of elite sport subcultures which affect athletes’ willingness to compete hurt (WCH). Materials & methods Based on a comprehensive sample of 1138 German elite adolescent athletes from all Olympic sports (14–18 years), the paper applies classification tree analysis to analyze the social and individual determinants of the WCH. Results Determinants on three hierarchical levels were identified, including type of sport, perceptions of social pressure, coach's leadership style and athletes' age. The group with the highest WCH were athletes from technical sports who have a coach with an autocratic leadership style. Second was athletes from ball games, and those in aesthetic and weight-dependent sports, aged between 17 and 18 years old. The lowest mean WCH-score, by some distance, occurred amongst the group of endurance and power sports athletes who experienced no direct social pressure to play hurt. Conclusions The findings enhance our understanding of absence/presence legitimacy in highly competitive social contexts and contribute to the development of more effective target-group-specific health prevention programs for young athletes

    Defects in leaf carbohydrate metabolism compromise acclimation to high light and lead to a high chlorophyll fluorescence phenotype in Arabidopsis thaliana

    Get PDF
    Background: We have studied the impact of carbohydrate-starvation on the acclimation response to high light using Arabidopsis thaliana double mutants strongly impaired in the day- and night path of photoassimilate export from the chloroplast. A complete knock-out mutant of the triose phosphate/phosphate translocator (TPT; tpt-2 mutant) was crossed to mutants defective in (i) starch biosynthesis (adg1-1, pgm1 and pgi1-1; knock-outs of ADP-glucose pyrophosphorylase, plastidial phosphoglucomutase and phosphoglucose isomerase) or (ii) starch mobilization (sex1-3, knock-out of glucan water dikinase) as well as in (iii) maltose export from the chloroplast (mex1-2). Results: All double mutants were viable and indistinguishable from the wild type when grown under low light conditions, but - except for sex1-3/tpt-2 - developed a high chlorophyll fluorescence (HCF) phenotype and growth retardation when grown in high light. Immunoblots of thylakoid proteins, Blue-Native gel electrophoresis and chlorophyll fluorescence emission analyses at 77 Kelvin with the adg1-1/tpt-2 double mutant revealed that HCF was linked to a specific decrease in plastome-encoded core proteins of both photosystems (with the exception of the PSII component cytochrome b559), whereas nuclear-encoded antennae (LHCs) accumulated normally, but were predominantly not attached to their photosystems. Uncoupled antennae are the major cause for HCF of dark-adapted plants. Feeding of sucrose or glucose to high light-grown adg1-1/tpt-2 plants rescued the HCF- and growth phenotypes. Elevated sugar levels induce the expression of the glucose-6-phosphate/phosphate translocator2 (GPT2), which in principle could compensate for the deficiency in the TPT. A triple mutant with an additional defect in GPT2 (adg1-1/tpt-2/gpt2-1) exhibited an identical rescue of the HCF- and growth phenotype in response to sugar feeding as the adg1-1/tpt-2 double mutant, indicating that this rescue is independent from the sugar-triggered induction of GPT2. Conclusions: We propose that cytosolic carbohydrate availability modulates acclimation to high light in A. thaliana. It is conceivable that the strong relationship between the chloroplast and nucleus with respect to a co-ordinated expression of photosynthesis genes is modified in carbohydrate-starved plants. Hence carbohydrates may be considered as a novel component involved in chloroplast-to-nucleus retrograde signaling, an aspect that will be addressed in future studies

    Virtual Reality Exposure to a Healthy Weight Body Is a Promising Adjunct Treatment for Anorexia Nervosa

    Get PDF
    Introduction/objective: Treatment results of anorexia nervosa (AN) are modest, with fear of weight gain being a strong predictor of treatment outcome and relapse. Here, we present a virtual reality (VR) setup for exposure to healthy weight and evaluate its potential as an adjunct treatment for AN. Methods: In two studies, we investigate VR experience and clinical effects of VR exposure to higher weight in 20 women with high weight concern or shape concern and in 20 women with AN. Results: In study 1, 90% of participants (18/20) reported symptoms of high arousal but verbalized low to medium levels of fear. Study 2 demonstrated that VR exposure to healthy weight induced high arousal in patients with AN and yielded a trend that four sessions of exposure improved fear of weight gain. Explorative analyses revealed three clusters of individual reactions to exposure, which need further exploration. Conclusions: VR exposure is a well-accepted and powerful tool for evoking fear of weight gain in patients with AN. We observed a statistical trend that repeated virtual exposure to healthy weight improved fear of weight gain with large effect sizes. Further studies are needed to determine the mechanisms and differential effects

    Tunnel technique with connective tissue graft versus coronally advanced flap with enamel matrix derivative for root coverage: a RCT using 3D digital measuring methods. Part II. Volumetric studies on healing dynamics and gingival dimensions

    Full text link
    AIM: The aim of this randomized clinical trial (RCT) was to compare the clinical performance of the tunnel technique with subepithelial connective tissue graft (TUN) versus a coronally advanced flap with enamel matrix derivative (CAF) in the treatment of gingival recession defects. The use of innovative 3D digital measuring methods allowed to study healing dynamics at connective tissue (CT)-grafted sites and to evaluate the influence of the thickness of the root covering soft tissues on the outcome of surgical root coverage. MATERIAL & METHODS: Twenty-four patients contributed a total of 47 Miller class I or II recessions for scientific evaluation. Precise study models collected at baseline and follow-up examinations were optically scanned and virtually superimposed for digital evaluation of clinical outcome measures including mean marginal soft tissue thickness (THK). Healing dynamics were measured in a defined region of interest at CT-grafted sites where volume differences between time points were calculated. RESULTS: At 12 months, recession reduction as well as mean root coverage were significantly better at CT-grafted sites treated in the TUN group (1.94 mm and 98.4% respectively) compared to the non-augmented sites of the CAF group (1.17 mm and 71.8% respectively) and statistical analysis revealed a positive correlation of THK (1.63 mm TUN versus 0.91 mm CAF, p < 0.0001) to both these variables. Soft tissue healing following surgical root coverage with CT-grafting was mainly accomplished after 6 months, with around two-thirds of the augmented volume being maintained after 12 months. CONCLUSIONS: The TUN resulted in thicker gingiva and better clinical outcomes compared to CAF. Increased gingival thickness was associated with better surgical outcomes in terms of recession reduction and root coverage

    Cognitive aging at work and in daily life—a narrative review on challenges due to age-related changes in central cognitive functions

    Get PDF
    Demographic change is leading to an increasing proportion of older employees in the labor market. At the same time, work activities are becoming more and more complex and require a high degree of flexibility, adaptability, and cognitive performance. Cognitive control mechanism, which is subject to age-related changes and is important in numerous everyday and work activities, plays a special role. Executive functions with its core functions updating, shifting, and inhibition comprises cognitive control mechanisms that serve to plan, coordinate, and achieve higher-level goals especially in inexperienced and conflicting actions. In this review, influences of age-related changes in cognitive control are demonstrated with reference to work and real-life activities, in which the selection of an information or response in the presence of competing but task-irrelevant stimuli or responses is particularly required. These activities comprise the understanding of spoken language under difficult listening conditions, dual-task walking, car driving in critical traffic situations, and coping with work interruptions. Mechanisms for compensating age-related limitations in cognitive control and their neurophysiological correlates are discussed with a focus on EEG measures. The examples illustrate how to access influences of age and cognitive control on and in everyday and work activities, focusing on its functional role for the work ability and well-being of older people

    Circumstellar Structure around Evolved Stars in the Cygnus-X Star Formation Region

    Get PDF
    We present observations of newly discovered 24 micron circumstellar structures detected with the Multiband Imaging Photometer for Spitzer (MIPS) around three evolved stars in the Cygnus-X star forming region. One of the objects, BD+43 3710, has a bipolar nebula, possibly due to an outflow or a torus of material. A second, HBHA 4202-22, a Wolf-Rayet candidate, shows a circular shell of 24 micron emission suggestive of either a limb-brightened shell or disk seen face-on. No diffuse emission was detected around either of these two objects in the Spitzer 3.6-8 micron Infrared Array Camera (IRAC) bands. The third object is the luminous blue variable candidate G79.29+0.46. We resolved the previously known inner ring in all four IRAC bands. The 24 micron emission from the inner ring extends ~1.2 arcmin beyond the shorter wavelength emission, well beyond what can be attributed to the difference in resolutions between MIPS and IRAC. Additionally, we have discovered an outer ring of 24 micron emission, possibly due to an earlier episode of mass loss. For the two shell stars, we present the results of radiative transfer models, constraining the stellar and dust shell parameters. The shells are composed of amorphous carbon grains, plus polycyclic aromatic hydrocarbons in the case of G79.29+0.46. Both G79.29+0.46 and HBHA 4202-22 lie behind the main Cygnus-X cloud. Although G79.29+0.46 may simply be on the far side of the cloud, HBHA 4202-22 is unrelated to the Cygnus-X star formation region.Comment: Accepted by A

    Consequences of permafrost degradation for Arctic infrastructure - Bridging the model gap between regional and engineering scales

    Get PDF
    Infrastructure built on perennially frozen ice-rich ground relies heavily on thermally stable subsurface conditions. Climate-warming-induced deepening of ground thaw puts such infrastructure at risk of failure. For better assessing the risk of large-scale future damage to Arctic infrastructure, improved strategies for model-based approaches are urgently needed. We used the laterally coupled 1D heat conduction model CryoGrid3 to simulate permafrost degradation affected by linear infrastructure. We present a case study of a gravel road built on continuous permafrost (Dalton highway, Alaska) and forced our model under historical and strong future warming conditions (following the RCP8.5 scenario). As expected, the presence of a gravel road in the model leads to higher net heat flux entering the ground compared to a reference run without infrastructure and thus a higher rate of thaw. Further, our results suggest that road failure is likely a consequence of lateral destabilisation due to talik formation in the ground beside the road rather than a direct consequence of a top-down thawing and deepening of the active layer below the road centre. In line with previous studies, we identify enhanced snow accumulation and ponding (both a consequence of infrastructure presence) as key factors for increased soil temperatures and road degradation. Using differing horizontal model resolutions we show that it is possible to capture these key factors and their impact on thawing dynamics with a low number of lateral model units, underlining the potential of our model approach for use in pan-Arctic risk assessments. Our results suggest a general two-phase behaviour of permafrost degradation: an initial phase of slow and gradual thaw, followed by a strong increase in thawing rates after the exceedance of a critical ground warming. The timing of this transition and the magnitude of thaw rate acceleration differ strongly between undisturbed tundra and infrastructure-affected permafrost ground. Our model results suggest that current model-based approaches which do not explicitly take into account infrastructure in their designs are likely to strongly underestimate the timing of future Arctic infrastructure failure. By using a laterally coupled 1D model to simulate linear infrastructure, we infer results in line with outcomes from more complex 2D and 3D models, but our model's computational efficiency allows us to account for long-term climate change impacts on infrastructure from permafrost degradation. Our model simulations underline that it is crucial to consider climate warming when planning and constructing infrastructure on permafrost as a transition from a stable to a highly unstable state can well occur within the service lifetime (about 30 years) of such a construction. Such a transition can even be triggered in the coming decade by climate change for infrastructure built on high northern latitude continuous permafrost that displays cold and relatively stable conditions today.publishedVersio
    • 

    corecore