5,453 research outputs found
Early Cenomanian ammonites from East and North-East Greenland
Early Cenomanian (100.5–95.7 Ma) ammonite faunas from East and North-East Greenland collected by the late Simon Kelly and colleagues are described. The assemblages are dominated by typically boreal Schloenbachia varians (J. Sowerby 1817). Also present are Parapuzosia (Austiniceras) austeni (Sharpe 1855) and species of more typically Tethyan genera. These include Phylloceras (Hypophylloceras) lombardense (Joly 2000), Gaudryceras (Gaudryceras) cassisianum (d’Orbigny 1850), Gaudryceras (Mesogaudryceras) leptonema (Sharpe 1855), and the hypermorphic tetragonitine Titanoleioceras boreale gen. et sp. nov. Previously known only from Geographical Society Ø and Traill Ø, the newly described material extends the distribution of these early Cenomanian faunas northwards to Hold with Hope and south to the Kangerlussuaq Basin. The phylloceratids, gaudryceratids, and tetragonitids in these assemblages are probably not preserved in their preferred original habitats, but rather drifted to their respective sites of burial during or after their lifetime
The Carbon content in the Galactic CygnusX/DR21 star forming region
Observations of Carbon bearing species are among the most important
diagnostic probes of ongoing star formation. CO is a surrogate for H and is
found in the vicinity of star formation sites. There, [CI] emission is thought
to outline the dense molecular cores and extend into the lower density regions,
where the impinging interstellar UV radiation field plays a critical role for
the dissociation and ionization processes. Emission of ionized carbon ([CII])
is found to be even more extended than [CI] and is linking up with the ionized
medium. These different tracers emphasize the importance of multi-wavelength
studies to draw a coherent picture of the processes driving and driven by high
mass star formation. Until now, large scale surveys were only done with low
resolution, such as the COBE full sky survey, or were biased to a few selected
bright sources (e.g. Yamamoto et al. 2001, Schneider et al. 2003). A broader
basis of unbiased, high-resolution observations of [CI], CO, and [CII] may play
a key role to probe the material processed by UV radiation.Comment: 4 pages, 4 figure, to appear in "Proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium", ed. S. Pfalzner, C. Kramer, C. Straubmeier,
and A. Heithausen (Springer Verlag
Report by the ESA-ESO Working Group on Fundamental Cosmology
ESO and ESA agreed to establish a number of Working Groups to explore
possible synergies between these two major European astronomical institutions.
This Working Group's mandate was to concentrate on fundamental questions in
cosmology, and the scope for tackling these in Europe over the next ~15 years.
One major resulting recommendation concerns the provision of new generations of
imaging survey, where the image quality and near-IR sensitivity that can be
attained only in space are naturally matched by ground-based imaging and
spectroscopy to yield massive datasets with well-understood photometric
redshifts (photo-z's). Such information is essential for a range of new
cosmological tests using gravitational lensing, large-scale structure, clusters
of galaxies, and supernovae. Great scope in future cosmology also exists for
ELT studies of the intergalactic medium and space-based studies of the CMB and
gravitational waves; here the synergy is less direct, but these areas will
remain of the highest mutual interest to the agencies. All these recommended
facilities will produce vast datasets of general applicability, which will have
a tremendous impact on broad areas of astronomy.Comment: ESA-ESO Working Groups Report No. 3, 125 pages, 28 figures. A PDF
version including the cover is available from
http://www.stecf.org/coordination/esa_eso/cosmology/report_cover.pdf and a
printed version (A5 booklet) is available in limited numbers from the Space
Telescope-European Coordinating Facility (ST-ECF): [email protected]
Cosmic shear analysis of archival HST/ACS data: I. Comparison of early ACS pure parallel data to the HST/GEMS Survey
This is the first paper of a series describing our measurement of weak
lensing by large-scale structure using archival observations from the Advanced
Camera for Surveys (ACS) on board the Hubble Space Telescope (HST).
In this work we present results from a pilot study testing the capabilities
of the ACS for cosmic shear measurements with early parallel observations and
presenting a re-analysis of HST/ACS data from the GEMS survey and the GOODS
observations of the Chandra Deep Field South (CDFS). We describe our new
correction scheme for the time-dependent ACS PSF based on observations of
stellar fields. This is currently the only technique which takes the full time
variation of the PSF between individual ACS exposures into account. We estimate
that our PSF correction scheme reduces the systematic contribution to the shear
correlation functions due to PSF distortions to < 2*10^{-6} for galaxy fields
containing at least 10 stars. We perform a number of diagnostic tests
indicating that the remaining level of systematics is consistent with zero for
the GEMS and GOODS data confirming the success of our PSF correction scheme.
For the parallel data we detect a low level of remaining systematics which we
interpret to be caused by a lack of sufficient dithering of the data.
Combining the shear estimate of the GEMS and GOODS observations using 96
galaxies arcmin^{-2} with the photometric redshift catalogue of the GOODS-MUSIC
sample, we determine a local single field estimate for the mass power spectrum
normalisation sigma_{8,CDFS}=0.52^{+0.11}_{-0.15} (stat) +/- 0.07 (sys) (68%
confidence assuming Gaussian cosmic variance) at fixed Omega_m=0.3 for a
LambdaCDM cosmology. We interpret this exceptionally low estimate to be due to
a local under-density of the foreground structures in the CDFS.Comment: Version accepted for publication in Astronomy & Astrophysics with 28
pages, 25 figures. A version with full resolution figures can be downloaded
from http://www.astro.uni-bonn.de/~schrabba/papers/cosmic_shear_acs1_v2.pd
Evidence of magnetic field decay in massive main-sequence stars
A significant fraction of massive main-sequence stars show strong,
large-scale magnetic fields. The origin of these fields, their lifetimes, and
their role in shaping the characteristics and evolution of massive stars are
currently not well understood. We compile a catalogue of 389 massive
main-sequence stars, 61 of which are magnetic, and derive their fundamental
parameters and ages. The two samples contain stars brighter than magnitude 9 in
the V band and range in mass between 5 and 100 Msun. We find that the
fractional main-sequence age distribution of all considered stars follows what
is expected for a magnitude limited sample, while that of magnetic stars shows
a clear decrease towards the end of the main sequence. This dearth of old
magnetic stars is independent of the choice of adopted stellar evolution
tracks, and appears to become more prominent when considering only the most
massive stars. We show that the decreasing trend in the distribution is
significantly stronger than expected from magnetic flux conservation. We also
find that binary rejuvenation and magnetic suppression of core convection are
unlikely to be responsible for the observed lack of older magnetic massive
stars, and conclude that its most probable cause is the decay of the magnetic
field, over a time span longer than the stellar lifetime for the lowest
considered masses, and shorter for the highest masses. We then investigate the
spin-down ages of the slowly rotating magnetic massive stars and find them to
exceed the stellar ages by far in many cases. The high fraction of very slowly
rotating magnetic stars thus provides an independent argument for a decay of
the magnetic fields.Comment: Accepted for publication on A&A; 9 pages, 8 figure
GaBoDS: The Garching-Bonn Deep Survey - III. Lyman-Break Galaxies in the Chandra Deep Field South
We present first results of our search for high-redshift galaxies in deep CCD
mosaic images. As a pilot study for a larger survey, very deep images of the
Chandra Deep Field South (CDFS), taken withWFI@MPG/ESO2.2m, are used to select
large samples of 1070 U-band and 565 B-band dropouts with the Lyman-break
method. The data of these Lyman-break galaxies are made public as an electronic
table. These objects are good candidates for galaxies at z~3 and z~4 which is
supported by their photometric redshifts. The distributions of apparent
magnitudes and the clustering properties of the two populations are analysed,
and they show good agreement to earlier studies. We see no evolution in the
comoving clustering scale length from z~3 to z~4. The techniques presented here
will be applied to a much larger sample of U-dropouts from the whole survey in
near future.Comment: 11 pages, 11 figures, replaced with version accepted by A&A. Minor
changes and tabular appendix with LBG catalogues. Version with full
resolution figures available at
http://www.astro.uni-bonn.de/~hendrik/2544.pd
Reducing distance errors for standard candles and standard sirens with weak-lensing shear and flexion maps
Gravitational lensing induces significant errors in the measured distances to
high-redshift standard candles and standard sirens such as type-Ia supernovae,
gamma-ray bursts, and merging supermassive black hole binaries. There will
therefore be a significant benefit from correcting for the lensing error by
using independent and accurate estimates of the lensing magnification. We
investigate how accurately the magnification can be inferred from convergence
maps reconstructed from galaxy shear and flexion data. We employ ray-tracing
through the Millennium Simulation to simulate lensing observations in large
fields, and perform a weak-lensing reconstruction on these fields. We identify
optimal ways to filter the reconstructed convergence maps and to convert them
to magnification maps. We find that a shear survey with 100 galaxies/arcmin^2
can help to reduce the lensing-induced distance errors for standard
candles/sirens at redshifts z=1.5 (z=5) on average by 20% (10%), whereas a
futuristic survey with shear and flexion estimates from 500 galaxies/arcmin^2
yields much larger reductions of 50% (35%). For redshifts z>=3, a further
improvement by 5% can be achieved, if the individual redshifts of the galaxies
are used in the reconstruction. Moreover, the reconstruction allows one to
identify regions for which the convergence is low, and in which an error
reduction by up to 75% can be achieved.Comment: 16 pages, 18 figures, submitted to MNRAS, minor changes, references
extended, comments welcom
SOFIA Observations of S106: Dynamics of the Warm Gas
Context The H II region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm. partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. To disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas. and to investigate the nature of the dark lane. Methods. We use the heterodyne receiver GREAT on board SOFIA to observe velocity resolved spectral lines of [C II] and CO 11 yields 10 in comparison with so far unpublished submm continuum data at 350 micron (8HARC-Il) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [C II] lines are found to be bright and very broad. tracing high velocity gas close to the interface of molecular cloud and H II region. CO 11 yields 10 emission is more confined.. both spatially and in velocity, to the immediate surroundings of S 106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and H II region
Using dynamic pupillometry as a simple screening tool to detect autonomic neuropathy in patients with diabetes: a pilot study
<p>Abstract</p> <p>Background</p> <p>Autonomic neuropathy is a common and serious complication of diabetes. Early detection is essential to enable appropriate interventional therapy and management. Dynamic pupillometry has been proposed as a simpler and more sensitive tool to detect subclinical autonomic dysfunction. The aim of this study was to investigate pupil responsiveness in diabetic subjects with and without cardiovascular autonomic neuropathy (CAN) using dynamic pupillometry in two sets of experiments.</p> <p>Methods</p> <p>During the first experiment, one flash was administered and the pupil response was recorded for 3 s. In the second experiment, 25 flashes at 1-s interval were administered and the pupil response was recorded for 30 s. Several time and pupil-iris radius-related parameters were computed from the acquired data. A total of 24 diabetic subjects (16 without and 8 with CAN) and 16 healthy volunteers took part in the study.</p> <p>Results</p> <p>Our results show that diabetic subjects with and without CAN have sympathetic and parasympathetic dysfunction, evidenced by diminished amplitude reflexes and significant smaller pupil radius. It suggests that pupillary autonomic dysfunction occurs before a more generalized involvement of the autonomic nervous system, and this could be used to detect early autonomic dysfunction.</p> <p>Conclusions</p> <p>Dynamic pupillometry provides a simple, inexpensive, and noninvasive tool to screen high-risk diabetic patients for diabetic autonomic neuropathy.</p
- …