958 research outputs found
Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center
To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells
SS25. Cryopreserved Venous Allograft: An Alternative Conduit for Reconstruction of Infected Prosthetic Aortic Grafts
Olivé Miliån, ArmandPla general picat del mosaic format per tres cercles:
el central, amb un sol de color ocre sobre un cel
blau. El sol, somrient, estĂ encarat cap al sud.
Aquest estĂ envoltat d'un primer anell dentat
i un segon on s'hi representen les fases d
High-Redshift SDSS Quasars with Weak Emission Lines
We identify a sample of 74 high-redshift quasars (z>3) with weak emission
lines from the Fifth Data Release of the Sloan Digital Sky Survey and present
infrared, optical, and radio observations of a subsample of four objects at
z>4. These weak emission-line quasars (WLQs) constitute a prominent tail of the
Lya+NV equivalent width distribution, and we compare them to quasars with more
typical emission-line properties and to low-redshift active galactic nuclei
with weak/absent emission lines, namely BL Lac objects. We find that WLQs
exhibit hot (T~1000 K) thermal dust emission and have rest-frame 0.1-5 micron
spectral energy distributions that are quite similar to those of normal
quasars. The variability, polarization, and radio properties of WLQs are also
different from those of BL Lacs, making continuum boosting by a relativistic
jet an unlikely physical interpretation. The most probable scenario for WLQs
involves broad-line region properties that are physically distinct from those
of normal quasars.Comment: Updated to match version published in ApJ. 20 pages, 12 figure
Loss of MITF expression during human embryonic stem cell differentiation disrupts retinal pigment epithelium development and optic vesicle cell proliferation
Microphthalmia-associated transcription factor (MITF) is a master regulator of pigmented cell survival and differentiation with direct transcriptional links to cell cycle, apoptosis and pigmentation. In mouse, Mitf is expressed early and uniformly in optic vesicle (OV) cells as they evaginate from the developing neural tube, and null Mitf mutations result in microphthalmia and pigmentation defects. However, homozygous mutations in MITF have not been identified in humans; therefore, little is known about its role in human retinogenesis. We used a human embryonic stem cell (hESC) model that recapitulates numerous aspects of retinal development, including OV specification and formation of retinal pigment epithelium (RPE) and neural retina progenitor cells (NRPCs), to investigate the earliest roles of MITF. During hESC differentiation toward a retinal lineage, a subset of MITF isoforms was expressed in a sequence and tissue distribution similar to that observed in mice. In addition, we found that promoters for the MITF-A, -D and -H isoforms were directly targeted by Visual Systems Homeobox 2 (VSX2), a transcription factor involved in patterning the OV toward a NRPC fate. We then manipulated MITF RNA and protein levels at early developmental stages and observed decreased expression of eye field transcription factors, reduced early OV cell proliferation and disrupted RPE maturation. This work provides a foundation for investigating MITF and other highly complex, multi-purposed transcription factors in a dynamic human developmental model syste
GREAT3 results I: systematic errors in shear estimation and the impact of real galaxy morphology
We present first results from the third GRavitational lEnsing Accuracy
Testing (GREAT3) challenge, the third in a sequence of challenges for testing
methods of inferring weak gravitational lensing shear distortions from
simulated galaxy images. GREAT3 was divided into experiments to test three
specific questions, and included simulated space- and ground-based data with
constant or cosmologically-varying shear fields. The simplest (control)
experiment included parametric galaxies with a realistic distribution of
signal-to-noise, size, and ellipticity, and a complex point spread function
(PSF). The other experiments tested the additional impact of realistic galaxy
morphology, multiple exposure imaging, and the uncertainty about a
spatially-varying PSF; the last two questions will be explored in Paper II. The
24 participating teams competed to estimate lensing shears to within systematic
error tolerances for upcoming Stage-IV dark energy surveys, making 1525
submissions overall. GREAT3 saw considerable variety and innovation in the
types of methods applied. Several teams now meet or exceed the targets in many
of the tests conducted (to within the statistical errors). We conclude that the
presence of realistic galaxy morphology in simulations changes shear
calibration biases by per cent for a wide range of methods. Other
effects such as truncation biases due to finite galaxy postage stamps, and the
impact of galaxy type as measured by the S\'{e}rsic index, are quantified for
the first time. Our results generalize previous studies regarding sensitivities
to galaxy size and signal-to-noise, and to PSF properties such as seeing and
defocus. Almost all methods' results support the simple model in which additive
shear biases depend linearly on PSF ellipticity.Comment: 32 pages + 15 pages of technical appendices; 28 figures; submitted to
MNRAS; latest version has minor updates in presentation of 4 figures, no
changes in content or conclusion
Recommended from our members
Coherent correlation imaging for resolving fluctuating states of matter
Fluctuations and stochastic transitions are ubiquitous in nanometre-scale systems, especially in the presence of disorder. However, their direct observation has so far been impeded by a seemingly fundamental, signal-limited compromise between spatial and temporal resolution. Here we develop coherent correlation imaging (CCI) to overcome this dilemma. Our method begins by classifying recorded camera frames in Fourier space. Contrast and spatial resolution emerge by averaging selectively over same-state frames. Temporal resolution down to the acquisition time of a single frame arises independently from an exceptionally low misclassification rate, which we achieve by combining a correlation-based similarity metric1,2 with a modified, iterative hierarchical clustering algorithm3,4. We apply CCI to study previously inaccessible magnetic fluctuations in a highly degenerate magnetic stripe domain state with nanometre-scale resolution. We uncover an intricate network of transitions between more than 30 discrete states. Our spatiotemporal data enable us to reconstruct the pinning energy landscape and to thereby explain the dynamics observed on a microscopic level. CCI massively expands the potential of emerging high-coherence X-ray sources and paves the way for addressing large fundamental questions such as the contribution of pinning5â8 and topology9â12 in phase transitions and the role of spin and charge order fluctuations in high-temperature superconductivity13,14
Dynamical Mass Measurement of the Young Spectroscopic Binary V343 Normae AaAb Resolved With the Gemini Planet Imager
We present new spatially resolved astrometry and photometry from the Gemini
Planet Imager of the inner binary of the young multiple star system V343
Normae, which is a member of the beta Pictoris moving group. V343 Normae
comprises a K0 and mid-M star in a ~4.5 year orbit (AaAb) and a wide 10" M5
companion (B). By combining these data with archival astrometry and radial
velocities we fit the orbit and measure individual masses for both components
of M_Aa = 1.10 +/- 0.10 M_sun and M_Ab = 0.290 +/- 0.018 M_sun. Comparing to
theoretical isochrones, we find good agreement for the measured masses and JHK
band magnitudes of the two components consistent with the age of the beta Pic
moving group. We derive a model-dependent age for the beta Pic moving group of
26 +/- 3 Myr by combining our results for V343 Normae with literature
measurements for GJ 3305, which is another group member with resolved binary
components and dynamical masses.Comment: 12 pages, 7 figures. Accepted to A
How the power spectrum of dust continuum images may hide the presence of a characteristic filament width
Context. Herschel observations of interstellar clouds support a paradigm for star formation in which molecular filaments play a central role. One of the foundations of this paradigm is the finding, based on detailed studies of the transverse column density profiles observed with Herschel, that nearby molecular filaments share a common inner width of âŒ0.1âpc. The existence of a characteristic filament width has been recently questioned, however, on the grounds that it seems inconsistent with the scale-free nature of the power spectrum of interstellar cloud images.
Aims. In an effort to clarify the origin of this apparent discrepancy, we examined the power spectra of the Herschel/SPIRE 250âÎŒm images of the Polaris, Aquila, and TaurusâL1495 clouds in detail and performed a number of simple numerical experiments by injecting synthetic filaments in both the Herschel images and synthetic background images.
Methods. We constructed several populations of synthetic filaments of 0.1âpc width with realistic area filling factors (Afil) and distributions of column density contrasts (ÎŽc). After adding synthetic filaments to the original Herschel images, we recomputed the image power spectra and compared the results with the original, essentially scale-free power spectra. We used the Ï2variance of the residuals between the best power-law fit and the output power spectrum in each simulation as a diagnostic of the presence (or absence) of a significant departure from a scale-free power spectrum.
Results. We find that Ï2variance depends primarily on the combined parameter ÎŽ22 Afil. According to our numerical experiments, a significant departure from a scale-free behavior and thus the presence of a characteristic filament width become detectable in the power spectrum when ÎŽ22 AfilââȘâ0.1 for synthetic filaments with Gaussian profiles and ÎŽ22 AfilââȘâ0.4 for synthetic filaments with Plummer-like density profiles. Analysis of the real Herschel 250âÎŒm data suggests that ÎŽ22 Afil is âŒ0.01 in the case of the Polaris cloud and âŒ0.016 in the Aquila cloud, significantly below the fiducial detection limit of ÎŽ22 AfilââŒâ0.1 in both cases. In both clouds, the observed filament contrasts and area filling factors are such that the filamentary structure contributes only âŒ1/5 of the power in the image power spectrum at angular frequencies where an effect of the characteristic filament width is expected.
Conclusions. We conclude that the essentially scale-free power spectra of Herschel images remain consistent with the existence of a characteristic filament width âŒ0.1âpc and do not invalidate the conclusions drawn from studies of the filament profiles
Automated data processing architecture for the Gemini Planet Imager Exoplanet Survey
The Gemini Planet Imager Exoplanet Survey (GPIES) is a multi-year direct
imaging survey of 600 stars to discover and characterize young Jovian
exoplanets and their environments. We have developed an automated data
architecture to process and index all data related to the survey uniformly. An
automated and flexible data processing framework, which we term the Data
Cruncher, combines multiple data reduction pipelines together to process all
spectroscopic, polarimetric, and calibration data taken with GPIES. With no
human intervention, fully reduced and calibrated data products are available
less than an hour after the data are taken to expedite follow-up on potential
objects of interest. The Data Cruncher can run on a supercomputer to reprocess
all GPIES data in a single day as improvements are made to our data reduction
pipelines. A backend MySQL database indexes all files, which are synced to the
cloud, and a front-end web server allows for easy browsing of all files
associated with GPIES. To help observers, quicklook displays show reduced data
as they are processed in real-time, and chatbots on Slack post observing
information as well as reduced data products. Together, the GPIES automated
data processing architecture reduces our workload, provides real-time data
reduction, optimizes our observing strategy, and maintains a homogeneously
reduced dataset to study planet occurrence and instrument performance.Comment: 21 pages, 3 figures, accepted in JATI
Characterizing 51 Eri b from 1-5 m: a partly-cloudy exoplanet
We present spectro-photometry spanning 1-5 m of 51 Eridani b, a 2-10
M planet discovered by the Gemini Planet Imager Exoplanet Survey.
In this study, we present new (1.90-2.19 m) and (2.10-2.40
m) spectra taken with the Gemini Planet Imager as well as an updated
(3.76 m) and new (4.67 m) photometry from the NIRC2 Narrow
camera. The new data were combined with (1.13-1.35 m) and
(1.50-1.80 m) spectra from the discovery epoch with the goal of better
characterizing the planet properties. 51 Eri b photometry is redder than field
brown dwarfs as well as known young T-dwarfs with similar spectral type
(between T4-T8) and we propose that 51 Eri b might be in the process of
undergoing the transition from L-type to T-type. We used two complementary
atmosphere model grids including either deep iron/silicate clouds or
sulfide/salt clouds in the photosphere, spanning a range of cloud properties,
including fully cloudy, cloud free and patchy/intermediate opacity clouds.
Model fits suggest that 51 Eri b has an effective temperature ranging between
605-737 K, a solar metallicity, a surface gravity of (g) = 3.5-4.0 dex,
and the atmosphere requires a patchy cloud atmosphere to model the SED. From
the model atmospheres, we infer a luminosity for the planet of -5.83 to -5.93
(), leaving 51 Eri b in the unique position as being one of
the only directly imaged planet consistent with having formed via cold-start
scenario. Comparisons of the planet SED against warm-start models indicates
that the planet luminosity is best reproduced by a planet formed via core
accretion with a core mass between 15 and 127 M.Comment: 27 pages, 19 figures, Accepted for publication in The Astronomical
Journa
- âŠ