35 research outputs found

    Matrix Metalloproteinase-9 (MMP-9) polymorphisms in patients with cutaneous malignant melanoma

    Get PDF
    BACKGROUND: Cutaneous Malignant Melanoma causes over 75% of skin cancer-related deaths, and it is clear that many factors may contribute to the outcome. Matrix Metalloproteinases (MMPs) play an important role in the degradation and remodeling of the extracellular matrix and basement membrane that, in turn, modulate cell division, migration and angiogenesis. Some polymorphisms are known to influence gene expression, protein activity, stability, and interactions, and they were shown to be associated with certain tumor phenotypes and cancer risk. METHODS: We tested seven polymorphisms within the MMP-9 gene in 1002 patients with melanoma in order to evaluate germline genetic variants and their association with progression and known risk factors of melanoma. The polymorphisms were selected based on previously published reports and their known or potential functional relevance using in-silico methods. Germline DNA was then genotyped using pyrosequencing, melting temperature profiles, heteroduplex analysis, and fragment size analysis. RESULTS: We found that reference alleles were present in higher frequency in patients who tend to sunburn, have family history of melanoma, higher melanoma stage, intransit metastasis and desmoplastic melanomas among others. However, after adjustment for age, sex, phenotypic index, moles, and freckles only Q279R, P574R and R668Q had significant associations with intransit metastasis, propensity to tan/sunburn and primary melanoma site. CONCLUSION: This study does not provide strong evidence for further investigation into the role of the MMP-9 SNPs in melanoma progression

    Regulation of VEGF-expression by patupilone and ionizing radiation in lung adenocarcinoma cells

    Full text link
    The use of microtubule stabilizing agents (MSA) is a promising strategy for anti-cancer therapy alone and as part of combined treatment modalities with ionizing radiation. However MSA-provoked molecular and cellular processes including the regulation of intercellular, paracrine signaling pathways are far from clear. Here we investigated the interference of the novel, clinically relevant MSA patupilone (epothilone B) with the tumor-cell derived vascular endothelial growth factor (VEGF), which is most relevant for tumor angiogenesis. Low-dose, sub-nanomolar concentrations of patupilone specifically reduced hypoxia-driven stabilization of the transcription factor HIF-1α in the patupilone-sensitive lung adenocarcinoma cell line A549, but not in the mutant derivative cell line A549.EpoB40. Patupilone further reduced hypoxia-induced VEGF expression and secretion but only in the A549 wildtype cell line. In the wildtype cell line, ionizing radiation alone induced hypoxia-dependent VEGF-expression but a strong dominant counteracting effect of patupilone was always observed when ionizing radiation was combined with patupilone, on the level of HIF-1α protein stability, VEGF-expression and VEGF-secretion. These results demonstrate that patupilone and ionizing radiation dysregulate hypoxia-induced stress responses, which might contribute to the potency of this promising, combined treatment modality

    MT4-MMP and EGFR expression levels are key biomarkers for breast cancer patient response to chemotherapy and erlotinib.

    Full text link
    BACKGROUND: Triple-negative breast cancers (TNBC) are heterogeneous cancers with poor prognosis. We aimed to determine the clinical relevance of membrane type-4 matrix metalloproteinase (MT4-MMP), a membrane type matrix metalloproteinase that interacts with epidermal growth factor receptor (EGFR) overexpressed in >50% of TNBC. METHODS: We conducted a retrospective immunohistochemical analysis on human TNBC samples (n=81) and validated our findings in in vitro and in vivo assays. RESULTS: Membrane type-4 matrix metalloproteinase and EGFR are produced in 72.5% of TNBC samples, whereas those proteins are faintly produced by healthy tissues. Unexpectedly, tumour relapse after chemotherapy was reduced in samples highly positive for MT4-MMP. Mechanistically, this is ascribed to a higher sensitivity of MT4-MMP-producing cells to alkylating or intercalating chemotherapeutic agents, as assessed in vitro. In sharp contrast, MT4-MMP expression did not affect tumour cell sensitivity to paclitaxel that interferes with protease trafficking. Importantly, MT4-MMP expression sensitised cancer cells to erlotinib, a tyrosine kinase EGFR inhibitor. In a pre-clinical model, the growth of MT4-MMP overexpressing xenografts, but not of control ones, was reduced by epirubicin or erlotinib. The combination of suboptimal drug doses blocked drastically the growth of MT4-MMP-producing tumours. CONCLUSIONS: We demonstrate that MT4-MMP defines a sub-population of TNBC sensitive to a combination of DNA-targeting chemotherapeutic agents and anti-EGFR drugs.British Journal of Cancer advance online publication 14 February 2017; doi:10.1038/bjc.2017.23 www.bjcancer.com
    corecore