148 research outputs found

    Double-blind, placebo-controlled first in human study to investigate an oral vaccine aimed to elicit an immune reaction against the VEGF-Receptor 2 in patients with stage IV and locally advanced pancreatic cancer

    Get PDF
    BACKGROUND: The investigational oral DNA vaccine VXM01 targets the vascular endothelial growth factor receptor 2 (VEGFR-2) and uses Salmonella typhi Ty21a as a vector. The immune reaction elicited by VXM01 is expected to disrupt the tumor neovasculature and, consequently, inhibit tumor growth. VXM01 potentially combines the advantages of anti-angiogenic therapy and active immunotherapy. METHODS/DESIGN: This phase I trial examines the safety, tolerability, and immunological and clinical responses to VXM01. The randomized, placebo-controlled, double blind dose-escalation study includes up to 45 patients with locally advanced and stage IV pancreatic cancer. The patients will receive four doses of VXM01 or placebo in addition to gemcitabine as standard of care. Doses from 10(6) cfu up to 10(10) cfu of VXM01 will be evaluated in the study. An independent data safety monitoring board (DSMB) will be involved in the dose-escalation decisions. In addition to safety as primary endpoint, the VXM01-specific immune reaction, as well as clinical response parameters will be evaluated. DISCUSSION: The results of this study shall provide the first data regarding the safety and immunogenicity of the oral anti-VEGFR-2 vaccine VXM01 in cancer patients. They will also define the recommended dose for phase II and provide the basis for further clinical evaluation, which may also include additional cancer indications. TRIAL REGISTRATION: EudraCT No.: 2011-000222-29, NCT01486329, ISRCTN6880927

    Mutational Analysis of the SOX9 Gene in Campomelic Dysplasia and Autosomal Sex Reversal: Lack of Genotype/Phenotype Correlations

    Get PDF
    It has previously been shown that, in the heterozygous state, mutations in the SOX9 gene cause campomelic dysplasia (CD) and the often associated autosomal XY sex reversal. In 12 CD patients, 10 novel mutations and one recurrent mutation were characterized in one SOX9 allele each, and in one case, no mutation was found. Four missense mutations are all located within the high mobility group (HMG) domain. They either reduce or abolish the DNA-binding ability of the mutant SOX9 proteins. Among the five nonsense and three frameshift mutations identified, two leave the C-terminal transactivation (TA) domain encompassing residues 402-509 of SOX9 partly or almost completely intact. When tested in cell transfection experiments, the recurrent nonsense mutation Y440X, found in two patients who survived for four and more than 9 years, respectively, exhibits some residual transactivation ability. In contrast, a frameshift mutation extending the protein by 70 residues at codon 507, found in a patient who died shortly after birth, showed no transactivation. This is apparently due to instability of the mutant SOX9 protein as demonstrated by Western blotting. Amino acid substitutions and nonsense mutations are found in patients with and without XY sex reversal, indicating that sex reversal in CD is subject to variable penetrance. Finally, none of 18 female patients with XY gonadal dysgenesis (Swyer syndrome) showed an altered SOX9 banding pattern in SSCP assays, providing evidence that SOX9 mutations do not usually result in XY sex reversal without skeletal malformation

    Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    Get PDF
    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases

    Tumor-Specific Hsp70 Plasma Membrane Localization Is Enabled by the Glycosphingolipid Gb3

    Get PDF
    Human tumors differ from normal tissues in their capacity to present Hsp70, the major stress-inducible member of the HSP70 family, on their plasma membrane. Membrane Hsp70 has been found to serve as a prognostic indicator of overall patient survival in leukemia, lower rectal and non small cell lung carcinomas. Why tumors, but not normal cells, present Hsp70 on their cell surface and the impact of membrane Hsp70 on cancer progression remains to be elucidated.Although Hsp70 has been reported to be associated with cholesterol rich microdomains (CRMs), the partner in the plasma membrane with which Hsp70 interacts has yet to be identified. Herein, global lipid profiling demonstrates that Hsp70 membrane-positive tumors differ from their membrane-negative counterparts by containing significantly higher amounts of globotriaoslyceramide (Gb3), but not of other lipids such as lactosylceramide (LacCer), dodecasaccharideceramide (DoCer), galactosylceramide (GalCer), ceramide (Cer), or the ganglioside GM1. Apart from germinal center B cells, normal tissues are Gb3 membrane-negative. Co-localization of Hsp70 and Gb3 was selectively determined in Gb3 membrane-positive tumor cells, and these cells were also shown to bind soluble Hsp70-FITC protein from outside in a concentration-dependent manner. Given that the latter interaction can be blocked by a Gb3-specific antibody, and that the depletion of globotriaosides from tumors reduces the amount of membrane-bound Hsp70, we propose that Gb3 is a binding partner for Hsp70. The in vitro finding that Hsp70 predominantly binds to artificial liposomes containing Gb3 (PC/SM/Chol/Gb3, 17/45/33/5) confirms that Gb3 is an interaction partner for Hsp70.These data indicate that the presence of Gb3 enables anchorage of Hsp70 in the plasma membrane of tumors and thus they might explain tumor-specific membrane localization of Hsp70

    Effects of Lycopene on the Initial State of Atherosclerosis in New Zealand White (NZW) Rabbits

    Get PDF
    BACKGROUND: Lycopene is the main carotenoid in tomatoes, where it is found in high concentrations. Strong epidemiological evidence suggests that lycopene may provide protection against cardiovascular diseases. We therefore studied the effects of lycopene on diet-induced increase in serum lipid levels and the initiation of atherosclerosis in New Zealand White (NZW) rabbits. METHODOLOGY/PRINCIPAL FINDINGS: The animals, divided into four groups of 9 animals each, were fed either a standard diet, a high-cholesterol diet containing 0.5% cholesterol, a high-cholesterol diet containing placebo beadlets, or a high-cholesterol diet plus 5 mg/kg body weight/day of lycopene (in the form of lycopene beadlets), for a period of 4 weeks. We found significantly elevated lycopene plasma levels in the animal group treated with lycopene beadlets. Compared to the high-cholesterol and the placebo group, this was associated with a significant reduction of 50% in total cholesterol and LDL cholesterol serum levels in the lycopene group. The amount of cholesteryl ester in the aorta was significantly decreased by lycopene. However, we did not observe a significant decrease in the extent of aortic surface lipid accumulation in the lycopene group. In addition, no differences in the intima-media thickness among groups were observed. Endothelial-dependent and endothelial-independent vasodilation in isolated rabbit aortic and carotid rings did not differ among any of the animal groups. CONCLUSIONS: Lycopene supplementation for 4 weeks increased lycopene plasma levels in the animals. Although we found strongly reduced total and LDL cholesterol serum levels as well as significantly lower amounts of cholesteryl ester in the aortae in the lycopene-treated group, no significant differences in initial lesions in the aortae were detected

    The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surfactant protein C (SP-C) is important for the function of pulmonary surfactant. Heterozygous mutations in <it>SFTPC</it>, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD) in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects.</p> <p>Methods</p> <p>SP-C<sup>A116D </sup>was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide.</p> <p>Results</p> <p>Stable expression of SP-C<sup>A116D </sup>in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-C<sup>A116D </sup>expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC) and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-C<sup>A116D </sup>cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4<sup>+ </sup>lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-C<sup>A116D </sup>on neighboring cells in the alveolar space.</p> <p>Conclusions</p> <p>We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy. Our findings shed new light on the pathomechanisms underlying SP-C deficiency associated ILD and provide insight into the mechanisms by which drugs currently used in ILD therapy act.</p

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore