9,762 research outputs found

    Estimating the Spectrum in Computed Tomography Via Kullback–Leibler Divergence Constrained Optimization

    Get PDF
    Purpose We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x‐ray spectrum that can accurately model the x‐ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system. Methods Spectrum estimation is posed as an optimization problem with x‐ray spectrum as unknown variables, and a Kullback–Leibler (KL)‐divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated‐gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation–maximization (EM) method is also discussed. Results In simulations, the proposed algorithm is seen to yield x‐ray spectra that closely match the ground truth and represent the attenuation process of x‐ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization‐based approach and EM. Conclusions Our formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL‐divergence constraint can include a prior spectrum and appears to capture important features of x‐ray spectrum, allowing accurate and robust estimation of x‐ray spectrum in CT imaging

    Variational theory for a single polyelectrolyte chain revisited

    Full text link
    We reconsider the electrostatic contribution to the persistence length, e\ell_e, of a single, infinitely long charged polymer in the presence of screening. A Gaussian variational method is employed, taking e\ell_e as the only variational parameter. For weakly charged and flexible chains, crumpling occurs at small length scales because conformational fluctuations overcome electrostatic repulsion. The electrostatic persistence length depends on the square of the screening length, eκ2\ell_e\sim\kappa^{-2}, as first argued by Khokhlov and Khachaturian by applying the Odijk-Skolnick-Fixman (OSF) theory to a string of crumpled blobs. We compare our approach to previous theoretical works (including variational formulations) and show that the result eκ1\ell_e\sim\kappa^{-1} found by several authors comes from the improper use of a cutoff at small length scales. For highly charged and stiff chains, crumpling does not occur; here we recover the OSF result and validate the perturbative calculation for slightly bent rods.Comment: 11 pages, 6 figure

    Ultrasonic Nondestructive Evaluation Using Laser Transducers

    Get PDF
    A program is described which employs lasers for ultrasonic NDE. A high-power laser is used to generate a brief sound pulse in the test specimen. A second low-power laser then measures the response of the specimen to that sound pulse. The response of the specimen is measured by a “Laser Vibrometer.” This is a novel type of heterodyne interferometer which focuses a Helium-Neon laser beam onto the surface of the specimen and measures its displacement. Displacements as small as 2×10-12 meters on a 0.15 sec averaging time can be detected and also displacements of 1.5×l0-9 meters on a 10-MHz bandwidth. The Laser Vibrometer has a well defined frequency response and does not introduce distortion. The sound generating laser is either a pulsed carbon dioxide TEA laser or a YAG laser. The peak power exceeds 10 M watt. Two mechanisms for generating the sound are discussed. The thermoelastic mechanism relies on the thermal expansion of the surface, causing it to move. The reaction to this causes a pressure pulse in the specimen. Another mechanism allows a small amount of the surface to be ablated and the reaction to this causes a substantial pressure pulse in the specimen. Both laser beams can be scanned over the surface of the specimen by a microprocessor controlled mirror. The microprocessor generates a raster scan of arbitrary size, number of lines, step size and speed. Eventually this technique will allow the inspection of complex specimens without direct contact. This will eliminate the tedium and contact reliability problems associated with conventional piezo-ceramic NDE

    The Persistence Length of a Strongly Charged, Rod-like, Polyelectrolyte in the Presence of Salt

    Full text link
    The persistence length of a single, intrinsically rigid polyelectrolyte chain, above the Manning condensation threshold is investigated theoretically in presence of added salt. Using a loop expansion method, the partition function is consistently calculated, taking into account corrections to mean-field theory. Within a mean-field approximation, the well-known results of Odijk, Skolnick and Fixman are reproduced. Beyond mean-field, it is found that density correlations between counterions and thermal fluctuations reduce the stiffness of the chain, indicating an effective attraction between monomers for highly charged chains and multivalent counterions. This attraction results in a possible mechanical instability (collapse), alluding to the phenomenon of DNA condensation. In addition, we find that more counterions condense on slightly bent conformations of the chain than predicted by the Manning model for the case of an infinite cylinder. Finally, our results are compared with previous models and experiments.Comment: 13 pages, 2 ps figure

    Nanostructure of cellulose microfibrils in spruce wood

    Get PDF
    The structure of cellulose microfibrils in wood is not known in detail, despite the abundance of cellulose in woody biomass and its importance for biology, energy, and engineering. The structure of the microfibrils of spruce wood cellulose was investigated using a range of spectroscopic methods coupled to small-angle neutron and wide-angle X-ray scattering. The scattering data were consistent with 24-chain microfibrils and favored a “rectangular” model with both hydrophobic and hydrophilic surfaces exposed. Disorder in chain packing and hydrogen bonding was shown to increase outwards from the microfibril center. The extent of disorder blurred the distinction between the I alpha and I beta allomorphs. Chains at the surface were distinct in conformation, with high levels of conformational disorder at C-6, less intramolecular hydrogen bonding and more outward-directed hydrogen bonding. Axial disorder could be explained in terms of twisting of the microfibrils, with implications for their biosynthesis

    Synthesis of anthraquinone based electroactive polymers: A critical review

    Get PDF
    Conducting polymers or synthetic monomers have revolutionized the world and are at the heart of scientific research having a scope of vast diverse applications in many technological fields. The conducting and redox polymers have been investigated as energy storage systems because of their better sustainability, ease of synthesis, and environmental compatibility. Owing to the conducting properties of quinones, they gain too much importance among the researchers. Keeping in view the importance and sustainability of conducting polymers, for the first time, this study compiles a detailed overview of synthetic approaches followed by investigations on electrochemical properties and future directions. This study critically examines the synthetic process of simple monomers, substituted monomers, and polymers of anthraquinone (AQ) under the classification of low- and high-molecular-weight AQ–based derivatives, their working principles, and their electrochemical applications, which enable us to explore their novel possible application in automotive, solar cell devices, aircraft aileron, and biomedical equipment. Irrefutably, we confirm that high-molecular-weight polymeric AQ compounds are best in comparison with low-molecular-weight AQ monomers because they have pre-eminent properties over monomeric systems. Because of the significant properties of AQ, polymeric systems are high demanding and have emerged as a hot topic among the researchers these days. In the current scenario, this study is of immense importance because it identifies and discusses the right and sustainable combination and paves the way to utilize these novel materials in different technologies

    Transitions/relaxations in polyester adhesive/PET system

    Get PDF
    The correlations between the transitions and the dielectric relaxation processes of the oriented poly(ethylene terephthalate) (PET) pre-impregnated of the polyester thermoplastic adhesive have been investigated by differential scanning calorimetry (DSC) and dynamic dielectric spectroscopy (DDS). The thermoplastic polyester adhesive and the oriented PET films have been studied as reference samples. This study evidences that the adhesive chain segments is responsible for the physical structure evolution in the PET-oriented film. The transitions and dielectric relaxation modes’ evolutions in the glass transition region appear characteristic of the interphase between adhesive and PET film, which is discussed in terms of molecular mobility. The storage at room temperature of the adhesive tape involves the heterogeneity of the physical structure, characterized by glass transition dissociation. Thus, the correlation between the transitions and the dielectric relaxation processes evidences a segregation of the amorphous phases. Therefore, the physical structure and the properties of the material have been linked to the chemical characteristics

    Validation of the Korean Integrative Medicine Attitude Questionnaire (IMAQ)

    Get PDF
    BACKGROUND: To develop a Korean version of the Integrative Medicine Attitude Questionnaire (IMAQ) in order to evaluate physician attitudes toward integrative medicine/complementary and alternative medicine (CAM). METHODS: We developed a Korean IMAQ through careful translation of the 28-item questionnaire developed by Schmidt et al. A web-based survey was sent via email to 118 primary care physicians in Korea. The complete respose rate wasa 52.5%. The questionnaire's reliability and validity were verified using Cronbach's α, factor analysis, and discriminant analysis. RESULTS: Although the Korean IMAQ exhibited excellent internal consistency, its validity was insufficient. Our results suggest that Western and Korean physicians may have different understandings of CAM and the concept of holism, as factor analysis showed that incorrectly classified items were mainly part of the holism conceptual domain. Furthermore, the sum of the items within the holism conceptual domain was not significantly different for physicians who had previously received CAM education. CONCLUSION: This study developed and tested the first Korean IMAQ. We found that this version of the questionnaire lacks sufficient validity and requires further modification.ope

    One-Dimensional Quantum Liquids: Beyond the Luttinger Liquid Paradigm

    Full text link
    For many years, the Luttinger liquid theory has served as a useful paradigm for the description of one-dimensional (1D) quantum fluids in the limit of low energies. This theory is based on a linearization of the dispersion relation of the particles constituting the fluid. We review the recent progress in understanding 1D quantum fluids beyond the low-energy limit, where the nonlinearity of the dispersion relation becomes essential. The novel methods which have been developed to tackle such systems combine phenomenology built on the ideas of the Fermi edge singularity and the Fermi liquid theory, perturbation theory in the interaction strength, and a new way of treating finite-size integrable models. These methods can be applied to a wide variety of 1D fluids, from 1D spin liquids to electrons in quantum wires to cold atoms confined to a 1D trap. We review existing results for various dynamic correlation functions, in particular the density structure factor and the spectral function. Moreover, we show how a dispersion nonlinearity leads to finite particle lifetimes, and discuss its impact on the transport properties of 1D systems at finite temperatures. The conventional Luttinger liquid theory is a special limit of the new theory, and we explain the relation between the two.Comment: 61 pages, 18 figures, published version, minor typos correcte

    Critical properties of 1-D spin 1/2 antiferromagnetic Heisenberg model

    Full text link
    We discuss numerical results for the 1-D spin 1/2 antiferromagnetic Heisenberg model with next-to-nearest neighbour coupling and in the presence of an uniform magnetic field. The model develops zero frequency excitations at field dependent soft mode momenta. We compute critical quantities from finite size dependence of static structure factors.Comment: talk given by H. Kr{\"o}ger at Heraeus Seminar Theory of Spin Lattices and Lattice Gauge Models, Bad Honnef (1996), 20 pages, LaTeX + 18 figures, P
    corecore