1,442 research outputs found

    Entwicklung von Maissorten mit spezieller Anpassung an die Bedingungen des Ökologischen Landbaus

    Get PDF
    Organic farming has gained in importance in Germany during the past years. Therefore an increasing demand exists for varieties with specific adaptation to this farming system. Hence it becomes necessary for plant breeders to optimize their selection strategy for varieties which meet the requirements of organic farming. For this purpose a research project was conducted at the University of Hohenheim, Institute of Plant Breeding, Seed Science, and Population Genetics in cooperation with the KWS SAAT AG. It was supported by the “Bundesprogramm Ökologischer Landbau” and lasted from April 2004 to December 2006. In the present contribution the results of comparative trials with maize under organic and conventional farming conditions in 2004 and 2005 are reported. It is demonstrated that under organic farming maize genotypes can be evaluated with similar precision as under conventional conditions. However, inconsistent correlations between the two farming systems indicate that the predictability of performance under organic farming from data obtained under conventional farming and vice versa strongly depends on the genetic materials

    Controlling magnetic anisotropy in La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> nanostructures

    Get PDF
    We have developed a chlorine based dry etching process for nanopatterning the ferromagnetic oxide La&lt;sub&gt;0.7&lt;/sub&gt;Sr&lt;sub&gt;0.3&lt;/sub&gt;MnO&lt;sub&gt;3&lt;/sub&gt; (LSMO). Large arrays of millions of identical structures have been fabricated from thin LSMO films by electron-beam lithography and reactive ion etching. SQUID magnetometry demonstrates that patterned nanostructures with lateral dimensions down to 100 nm retain their full magnetization and the Curie temperature of the bulk layer. In addition, their shape anisotropy is sufficient to overcome the crystalline anisotropy of the bulk. High resolution scanning transmission electron microscopy shows that crystallinity is preserved even at the edges of the nanostructures

    Physicality and Cooperative Design

    Get PDF
    CSCW researchers have increasingly come to realize that material work setting and its population of artefacts play a crucial part in coordination of distributed or co-located work. This paper uses the notion of physicality as a basis to understand cooperative work. Using examples from an ongoing fieldwork on cooperative design practices, it provides a conceptual understanding of physicality and shows that material settings and co-worker’s working practices play an important role in understanding physicality of cooperative design

    Azimuthal Correlations in the Target Fragmentation Region of High Energy Nuclear Collisions

    Get PDF
    Results on the target mass dependence of proton and pion pseudorapidity distributions and of their azimuthal correlations in the target rapidity range −1.73≀η≀1.32-1.73 \le \eta \le 1.32 are presented. The data have been taken with the Plastic-Ball detector set-up for 4.9 GeV p + Au collisions at the Berkeley BEVALAC and for 200 A⋅A\cdotGeV/cc p-, O-, and S-induced reactions on different nuclei at the CERN-SPS. The yield of protons at backward rapidities is found to be proportional to the target mass. Although protons show a typical ``back-to-back'' correlations, a ``side-by-side'' correlation is observed for positive pions, which increases both with target mass and with impact parameter of a collision. The data can consistently be described by assuming strong rescattering phenomena including pion absorption effects in the entire excited target nucleus.Comment: 7 pages, figures included, complete postscript available at ftp://qgp.uni-muenster.de/pub/paper/azi-correlations.ps submitted to Phys. Lett.

    Association of Prenatal Maternal Depression and Anxiety Symptoms with Infant White Matter Microstructure

    Get PDF
    Importance: Maternal depression and anxiety can have deleterious and lifelong consequences on child development. However, many aspects of the association of early brain development with maternal symptoms remain unclear. Understanding the timing of potential neurobiological alterations holds inherent value for the development and evaluation of future therapies and interventions. Objective: To examine the association between exposure to prenatal maternal depression and anxiety symptoms and offspring white matter microstructure at 1 month of age. Design, Setting, and Participants: This cohort study of 101 mother-infant dyads used a composite of depression and anxiety symptoms measured in mothers during the third trimester of pregnancy and measures of white matter microstructure characterized in the mothers' 1-month offspring using diffusion tensor imaging and neurite orientation dispersion and density imaging performed from October 1, 2014, to November 30, 2016. Magnetic resonance imaging was performed at an academic research facility during natural, nonsedated sleep. Main Outcomes and Measures: Brain mapping algorithms and statistical models were used to evaluate the association between maternal depression and anxiety and 1-month infant white matter microstructure as measured by diffusion tensor imaging and neurite orientation dispersion and density imaging findings. Results: In the 101 mother-infant dyads (mean [SD] age of mothers, 33.22 [3.99] years; mean age of infants at magnetic resonance imaging, 33.07 days [range, 18-50 days]; 92 white mothers [91.1%]; 53 male infants [52.5%]), lower 1-month white matter microstructure (decreased neurite density and increased mean, radial, and axial diffusivity) was associated in right frontal white matter microstructure with higher prenatal maternal symptoms of depression and anxiety. Significant sex × symptom interactions with measures of white matter microstructure were also observed, suggesting that white matter development may be differentially sensitive to maternal depression and anxiety symptoms in males and females during the prenatal period. Conclusions and Relevance: These data highlight the importance of the prenatal period to early brain development and suggest that the underlying white matter microstructure is associated with the continuum of prenatal maternal depression and anxiety symptoms

    Advanced code-division multiplexers for superconducting detector arrays

    Full text link
    Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal-plane code-division multiplexers can be combined with multi-gigahertz readout based on superconducting microresonators to scale to even larger arrays.Comment: 8 pages, 3 figures, presented at the 14th International Workshop on Low Temperature Detectors, Heidelberg University, August 1-5, 2011, proceedings to be published in the Journal of Low Temperature Physic

    Task-Oriented Conversational Behavior of Agents for Collaboration in Human-Agent Teamwork

    Get PDF
    International audienceCoordination is an essential ingredient for human-agent teamwork. It requires team members to share knowledge to establish common grounding and mutual awareness among them. This paper proposes a be-havioral architecture C 2 BDI that enhances the knowledge sharing using natural language communication between team members. Collaborative conversation protocols and resource allocation mechanism have been defined that provide proactive behavior to agents for coordination. This architecture has been applied to a real scenario in a collaborative virtual environment for learning. The solution enables users to coordinate with other team members

    Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception

    Get PDF
    Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem cell interface. Fewer inhibitory neurons form in the OB of EGFL7-knockout mice, which increases the absolute signal conducted from the mitral cell layer of the OB but decreases neuronal network synchronicity. Consequently, EGFL7-knockout mice display severe physiological defects in olfactory behaviour and perception
    • 

    corecore