705 research outputs found

    Localness of energy cascade in hydrodynamic turbulence, II. Sharp spectral filter

    Full text link
    We investigate the scale-locality of subgrid-scale (SGS) energy flux and inter-band energy transfers defined by the sharp spectral filter. We show by rigorous bounds, physical arguments and numerical simulations that the spectral SGS flux is dominated by local triadic interactions in an extended turbulent inertial-range. Inter-band energy transfers are also shown to be dominated by local triads if the spectral bands have constant width on a logarithmic scale. We disprove in particular an alternative picture of ``local transfer by nonlocal triads,'' with the advecting wavenumber mode at the energy peak. Although such triads have the largest transfer rates of all {\it individual} wavenumber triads, we show rigorously that, due to their restricted number, they make an asymptotically negligible contribution to energy flux and log-banded energy transfers at high wavenumbers in the inertial-range. We show that it is only the aggregate effect of a geometrically increasing number of local wavenumber triads which can sustain an energy cascade to small scales. Furthermore, non-local triads are argued to contribute even less to the space-average energy flux than is implied by our rigorous bounds, because of additional cancellations from scale-decorrelation effects. We can thus recover the -4/3 scaling of nonlocal contributions to spectral energy flux predicted by Kraichnan's ALHDIA and TFM closures. We support our results with numerical data from a 5123512^3 pseudospectral simulation of isotropic turbulence with phase-shift dealiasing. We conclude that the sharp spectral filter has a firm theoretical basis for use in large-eddy simulation (LES) modeling of turbulent flows.Comment: 42 pages, 9 figure

    A quantum search for zeros of polynomials

    Get PDF
    A quantum mechanical search procedure to determine the real zeros of a polynomial is introduced. It is based on the construction of a spin observable whose eigenvalues coincide with the zeros of the polynomial. Subsequent quantum mechanical measurements of the observable output directly the numerical values of the zeros. Performing the measurements is the only computational resource involved

    Resumen de la tarea de DETESTS en IberLEF 2022: DETEcción y clasificación de eSTereotipos raciales en eSpañol

    Get PDF
    This paper presents an overview of the DETESTS shared task as part of the IberLEF 2022 Workshop on Iberian Languages Evaluation Forum, within the framework of the SEPLN 2022 conference. We proposed two hierarchical subtasks: For subtask 1, participants had to determine the presence of stereotypes in sentences. For subtask 2, participants had to classify the sentences labeled with stereotypes into ten categoriesEste artículo presenta un resumen de la tarea DETESTS como parte del workshop IberLEF 2022, dentro de la conferencia SEPLN 2022. Proponemos dos subtareas jerárquicas: En la subtarea 1, los participantes tuvieron que determinar la presencia de estereotipos raciales en oraciones. En la subtarea 2, de las oraciones etiquetadas con estereotipo, los participantes tuvieron que clasificarlas en una o más de diez categorías. El dataset DETESTS contiene 5.629 oraciones de comentarios que responden a artículos de periódicos sobre inmigración en español. 51 equipos se registraron para participar, de los cuales 39 enviaron predicciones de sistemas y 5 de ellos enviaron artículos. En este artículo presentamos información sobre los datasets de entrenamiento y de prueba, los sistemas utilizados por los participantes, las métricas de evaluación y sus resultados.. The DETESTS dataset contains 5,629 sentences in comments in response to newspaper articles related to immigration in Spanish. 51 teams signed up to participate, of which 39 sent runs, and 5 of them sent their working notes. In this paper, we provide information about the training and test datasets, the systems used by the participants, the evaluation metrics of the systems and their results.Este artículo presenta un resumen de la tarea DETESTS como parte del workshop IberLEF 2022, dentro de la conferencia SEPLN 2022. Proponemos dos subtareas jerárquicas: En la subtarea 1, los participantes tuvieron que determinar la presencia de estereotipos raciales en oraciones. En la subtarea 2, de las oraciones etiquetadas con estereotipo, los participantes tuvieron que clasificarlas en una o más de diez categorías. El dataset DETESTS contiene 5.629 oraciones de comentarios que responden a artículos de periódicos sobre inmigración en español. 51 equipos se registraron para participar, de los cuales 39 enviaron predicciones de sistemas y 5 de ellos enviaron artículos. En este artículo presentamos información sobre los datasets de entrenamiento y de prueba, los sistemas utilizados por los participantes, las métricas de evaluación y sus resultados.This work is supported by the following projects: ‘STERHEOTYPES: STudying European Racial Hoaxes and sterEOTYPES’ funded by Fondazione Compagnia di San Paolo and grant ‘XAIDisInfodemics: eXplainable AI for disinformation and conspiracy detection during infodemics’ (PLEC2021-007681) funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by the “European Union NextGenerationEU/PRTR”. The work of Paolo Rosso was carried out within the framework of the research project PROMETEO/2019/121 (DeepPattern) by the Generalitat Valenciana

    Identification of direct residue contacts in protein-protein interaction by message passing

    Full text link
    Understanding the molecular determinants of specificity in protein-protein interaction is an outstanding challenge of postgenome biology. The availability of large protein databases generated from sequences of hundreds of bacterial genomes enables various statistical approaches to this problem. In this context covariance-based methods have been used to identify correlation between amino acid positions in interacting proteins. However, these methods have an important shortcoming, in that they cannot distinguish between directly and indirectly correlated residues. We developed a method that combines covariance analysis with global inference analysis, adopted from use in statistical physics. Applied to a set of >2,500 representatives of the bacterial two-component signal transduction system, the combination of covariance with global inference successfully and robustly identified residue pairs that are proximal in space without resorting to ad hoc tuning parameters, both for heterointeractions between sensor kinase (SK) and response regulator (RR) proteins and for homointeractions between RR proteins. The spectacular success of this approach illustrates the effectiveness of the global inference approach in identifying direct interaction based on sequence information alone. We expect this method to be applicable soon to interaction surfaces between proteins present in only 1 copy per genome as the number of sequenced genomes continues to expand. Use of this method could significantly increase the potential targets for therapeutic intervention, shed light on the mechanism of protein-protein interaction, and establish the foundation for the accurate prediction of interacting protein partners.Comment: Supplementary information available on http://www.pnas.org/content/106/1/67.abstrac

    Seasonality of aerosol optical properties in the Arctic

    Get PDF
    Given the sensitivity of the Arctic climate to short-lived climate forcers, long-term in situ surface measurements of aerosol parameters are useful in gaining insight into the magnitude and variability of these climate forcings. Seasonality of aerosol optical properties – including the aerosol light-scattering coefficient, absorption coefficient, single-scattering albedo, scattering Ångström exponent, and asymmetry parameter – are presented for six monitoring sites throughout the Arctic: Alert, Canada; Barrow, USA; Pallas, Finland; Summit, Greenland; Tiksi, Russia; and Zeppelin Mountain, Ny-Ålesund, Svalbard, Norway. Results show annual variability in all parameters, though the seasonality of each aerosol optical property varies from site to site. There is a large diversity in magnitude and variability of scattering coefficient at all sites, reflecting differences in aerosol source, transport, and removal at different locations throughout the Arctic. Of the Arctic sites, the highest annual mean scattering coefficient is measured at Tiksi (12.47&thinsp;Mm−1), and the lowest annual mean scattering coefficient is measured at Summit (1.74&thinsp;Mm−1). At most sites, aerosol absorption peaks in the winter and spring, and has a minimum throughout the Arctic in the summer, indicative of the Arctic haze phenomenon; however, nuanced variations in seasonalities suggest that this phenomenon is not identically observed in all regions of the Arctic. The highest annual mean absorption coefficient is measured at Pallas (0.48&thinsp;Mm−1), and Summit has the lowest annual mean absorption coefficient (0.12&thinsp;Mm−1). At the Arctic monitoring stations analyzed here, mean annual single-scattering albedo ranges from 0.909 (at Pallas) to 0.960 (at Barrow), the mean annual scattering Ångström exponent ranges from 1.04 (at Barrow) to 1.80 (at Summit), and the mean asymmetry parameter ranges from 0.57 (at Alert) to 0.75 (at Summit). Systematic variability of aerosol optical properties in the Arctic supports the notion that the sites presented here measure a variety of aerosol populations, which also experience different removal mechanisms. A robust conclusion from the seasonal cycles presented is that the Arctic cannot be treated as one common and uniform environment but rather is a region with ample spatiotemporal variability in aerosols. This notion is important in considering the design or aerosol monitoring networks in the region and is important for informing climate models to better represent short-lived aerosol climate forcers in order to yield more accurate climate predictions for the Arctic.</p

    Nanosized superparamagnetic precipitates in cobalt-doped ZnO

    Full text link
    The existence of semiconductors exhibiting long-range ferromagnetic ordering at room temperature still is controversial. One particularly important issue is the presence of secondary magnetic phases such as clusters, segregations, etc... These are often tedious to detect, leading to contradictory interpretations. We show that in our cobalt doped ZnO films grown homoepitaxially on single crystalline ZnO substrates the magnetism unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and AC susceptibility measurements. The results were correlated to a detailed microstructural analysis based on high resolution x-ray diffraction, transmission electron microscopy, and electron-spectroscopic imaging. No evidence for carrier mediated ferromagnetic exchange between diluted cobalt moments was found. In contrast, the combined data provide clear evidence that the observed room temperature ferromagnetic-like behavior originates from nanometer sized superparamagnetic metallic cobalt precipitates.Comment: 20 pages, 6 figures; details about background subtraction added to section III. (XMCD

    Analysis of the surface state of epi-ready Ge wafers

    Get PDF
    The surface state of Ge epi-ready wafers (such as those used on III-V multijunction solar cells) supplied by two different vendors has been studied using X-ray photoemission spectroscopy. Our experimental results show that the oxide layer on the wafer surface is formed by GeO and GeO2. This oxide layer thickness differs among wafers coming from different suppliers. Besides, several contaminants appear on the wafer surfaces, carbon and probably chlorine being common to every wafer, irrespective of its origin. Wafers from one of the vendors show the presence of carbonates at their surfaces. On such wafers, traces of potassium seem to be present too

    The complex TIE between macrophages and angiogenesis

    Get PDF
    Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway
    corecore