345 research outputs found

    Driving magnetic order in a manganite by ultrafast lattice excitation

    Full text link
    Optical control of magnetism, of interest for high-speed data processing and storage, has only been demonstrated with near-infrared excitation to date. However, in absorbing materials, such high photon energies can lead to significant dissipation, making switch back times long and miniaturization challenging. In manganites, magnetism is directly coupled to the lattice, as evidenced by the response to external and chemical pressure, or to ferroelectric polarization. Here, femtosecond mid-infrared pulses are used to excite the lattice in La0.5Sr1.5MnO4 and the dynamics of electronic order are measured by femtosecond resonant soft x-ray scattering with an x-ray free electron laser. We observe that magnetic and orbital orders are reduced by excitation of the lattice. This process, which occurs within few picoseconds, is interpreted as relaxation of the complex charge-orbital-spin structure following a displacive exchange quench - a prompt shift in the equilibrium value of the magnetic and orbital order parameters after the lattice has been distorted. A microscopic picture of the underlying unidirectional lattice displacement is proposed, based on nonlinear rectification of the directly-excited vibrational field, as analyzed in the specific lattice symmetry of La0.5Sr1.5MnO4. Control of magnetism through ultrafast lattice excitation has important analogies to the multiferroic effect and may serve as a new paradigm for high-speed optomagnetism.Comment: 10 pages manuscript, 4 figure

    Ultrafast Laser-Induced Melting of Long-Range Magnetic Order in Multiferroic TbMnO3

    Full text link
    We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low temperatures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of 22.3 +- 1.1 ps, which is much slower than the ~1 ps melting times previously observed in other systems. To explain the data we propose a simple model of the melting process where the pump laser pulse directly excites the electronic system, which then leads to an increase in the effective temperature of the spin system via a slower relaxation mechanism. Despite this apparent increase in the effective spin temperature, we do not observe changes in the wavevector q of the antiferromagnetic spin order that would typically correlate with an increase in temperature under equilibrium conditions. We suggest that this behavior results from the extremely low magnon group velocity that hinders a change in the spin-spiral wavevector on these time scales.Comment: 9 pages, 4 figure

    Magnetic switching in granular FePt layers promoted by near-field laser enhancement

    Full text link
    Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle x-ray scattering at an x-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, one order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between "up" and "down" magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material, with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer

    Probing the interplay between lattice dynamics and short-range magnetic correlations in CuGeO3 with femtosecond RIXS

    Full text link
    Investigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang-Rice singlet exciton. Utilizing trRIXS measurements at the O K-edge, and in combination with model calculations, we probe the short-range spin-correlations in the frustrated spin chain material CuGeO3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems

    Evolution of three-dimensional correlations during the photoinduced melting of antiferromagnetic order in La

    Get PDF
    Using time-resolved resonant soft x-ray diffraction, we measure the evolution of the full three-dimensional scattering volume of the antiferromagnetic superlattice reflection in the single-layer manganite La<sub>0.5</sub>Sr<sub>1.5</sub>MnO<sub>4</sub> on femtosecond time scales following photoexcitation. We find that the in-plane correlations are unchanged as a metastable state is entered, however there are subtle changes in the c-axis correlations. We observe a transient shift of the scattering ellipsoid along (00L) at very short times, and at longer time scales the short-range c-axis correlations are more robust than they are in equilibrium. Such results are not obtainable with any other techniques and hint at previously unresolved processes in the dynamics of photomelting in strongly correlated systems

    An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy

    Full text link
    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Although only five years have elapsed since the technique was first introduced, it has made rapid progress in demonstrating high-resolution threedimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a lifescience sample by XDM with a given resolution. We conclude that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered by reports in the literature. The tentative conclusion of this study is that XDM should be able to image frozen-hydrated protein samples at a resolution of about 10 nm with "Rose-criterion" image quality.Comment: 9 pages, 4 figure
    • …
    corecore