We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray
diffraction probe measurements to investigate the coupling between the
photoexcited electronic system and the spin cycloid magnetic order in
multiferroic TbMnO3 at low temperatures. We observe melting of the long range
antiferromagnetic order at low excitation fluences with a decay time constant
of 22.3 +- 1.1 ps, which is much slower than the ~1 ps melting times previously
observed in other systems. To explain the data we propose a simple model of the
melting process where the pump laser pulse directly excites the electronic
system, which then leads to an increase in the effective temperature of the
spin system via a slower relaxation mechanism. Despite this apparent increase
in the effective spin temperature, we do not observe changes in the wavevector
q of the antiferromagnetic spin order that would typically correlate with an
increase in temperature under equilibrium conditions. We suggest that this
behavior results from the extremely low magnon group velocity that hinders a
change in the spin-spiral wavevector on these time scales.Comment: 9 pages, 4 figure