90 research outputs found

    The Evolution of Invasiveness in Garden Ants

    Get PDF
    It is unclear why some species become successful invaders whilst others fail, and whether invasive success depends on pre-adaptations already present in the native range or on characters evolving de-novo after introduction. Ants are among the worst invasive pests, with Lasius neglectus and its rapid spread through Europe and Asia as the most recent example of a pest ant that may become a global problem. Here, we present the first integrated study on behavior, morphology, population genetics, chemical recognition and parasite load of L. neglectus and its non-invasive sister species L. turcicus. We find that L. neglectus expresses the same supercolonial syndrome as other invasive ants, a social system that is characterized by mating without dispersal and large networks of cooperating nests rather than smaller mutually hostile colonies. We conclude that the invasive success of L. neglectus relies on a combination of parasite-release following introduction and pre-adaptations in mating system, body-size, queen number and recognition efficiency that evolved long before introduction. Our results challenge the notion that supercolonial organization is an inevitable consequence of low genetic variation for chemical recognition cues in small invasive founder populations. We infer that low variation and limited volatility in cuticular hydrocarbon profiles already existed in the native range in combination with low dispersal and a highly viscous population structure. Human transport to relatively disturbed urban areas thus became the decisive factor to induce parasite release, a well established general promoter of invasiveness in non-social animals and plants, but understudied in invasive social insects

    Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees

    Get PDF
    email Suzanne orcd idCopyright: © 2015 Williams et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    The Integrative Taxonomic Approach Reveals Host Specific Species in an Encyrtid Parasitoid Species Complex

    Get PDF
    Integrated taxonomy uses evidence from a number of different character types to delimit species and other natural groupings. While this approach has been advocated recently, and should be of particular utility in the case of diminutive insect parasitoids, there are relatively few examples of its application in these taxa. Here, we use an integrated framework to delimit independent lineages in Encyrtus sasakii (Hymenoptera: Chalcidoidea: Encyrtidae), a parasitoid morphospecies previously considered a host generalist. Sequence variation at the DNA barcode (cytochrome c oxidase I, COI) and nuclear 28S rDNA loci were compared to morphometric recordings and mating compatibility tests, among samples of this species complex collected from its four scale insect hosts, covering a broad geographic range of northern and central China. Our results reveal that Encyrtus sasakii comprises three lineages that, while sharing a similar morphology, are highly divergent at the molecular level. At the barcode locus, the median K2P molecular distance between individuals from three primary populations was found to be 11.3%, well outside the divergence usually observed between Chalcidoidea conspecifics (0.5%). Corroborative evidence that the genetic lineages represent independent species was found from mating tests, where compatibility was observed only within populations, and morphometric analysis, which found that despite apparent morphological homogeneity, populations clustered according to forewing shape. The independent lineages defined by the integrated analysis correspond to the three scale insect hosts, suggesting the presence of host specific cryptic species. The finding of hidden host specificity in this species complex demonstrates the critical role that DNA barcoding will increasingly play in revealing hidden biodiversity in taxa that present difficulties for traditional taxonomic approaches

    Stridulations Reveal Cryptic Speciation in Neotropical Sympatric Ants

    Get PDF
    The taxonomic challenge posed by cryptic species underlines the importance of using multiple criteria in species delimitation. In the current paper we tested the use of acoustic analysis as a tool to assess the real diversity in a cryptic species complex of Neotropical ants. In order to understand the potential of acoustics and to improve consistency in the conclusions by comparing different approaches, phylogenetic relationships of all the morphs considered were assessed by the analysis of a fragment of the mitochondrial DNA cytochrome b. We observed that each of the cryptic morph studied presents a morphologically distinct stridulatory organ and that all sympatric morphs produce distinctive stridulations. This is the first evidence of such a degree of specialization in the acoustic organ and signals in ants, which suggests that stridulations may be among the cues used by these ants during inter-specific interactions. Mitochondrial DNA variation corroborated the acoustic differences observed, confirming acoustics as a helpful tool to determine cryptic species in this group of ants, and possibly in stridulating ants in general. Congruent morphological, acoustic and genetic results constitute sufficient evidence to propose each morph studied here as a valid new species, suggesting that P. apicalis is a complex of at least 6 to 9 species, even if they present different levels of divergence. Finally, our results highlight that ant stridulations may be much more informative than hitherto thought, as much for ant communication as for integrative taxonomists

    Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida)

    Get PDF
    Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of ‘taxonomics’. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from highthroughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research

    Roles of spatial scale and rarity on the relationship between butterfly species richness and human density in South Africa

    Get PDF
    Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2′ to 60′ across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation

    Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species?

    Full text link

    Twenty four new microsatellite markers in two invasive pavement ants, Tetramorium sp.E and T. tsushimae (Hymenoptera: Formicidae)

    No full text
    Invasive species trigger biodiversity losses and alter ecosystem functioning, with life history shaping invasiveness (Sakai et al., Annu Rev Ecol Syst 32:305–332, 2001). However, pinpointing the relation of a specific life history to invasion success is difficult. One approach may be comparing congeners. The two Palearctic pavement ants, Tetramorium sp.E (widely known as T. caespitum, Schlick-Steiner et al., Mol Phylogenet Evol 40:259–273, 2006) and T. tsushimae have invaded North America (Steiner et al., Biol Invasions 8:117–123, 2006). Their life histories differ in that T. sp.E has separate single-queened colonies but T. tsushimae multi-queened colonies scattered over large areas (Sanada-Morimura et al., Insect Soc 53:141–148, 2006; Schlick-Steiner et al., Mol Phylogenet Evol 40:259–273, 2006; Steiner et al., Biol Invasions 8:117–123, 2006). Comparison of the genetic diversity in the entire native and non-native ranges will elucidate the invasion histories. Here, we present 13 and 11 microsatellites, developed for T. sp.E and T. tsushimae, respectively, and characterize all for both species

    Cryptic diversity in the Mediterranean Temnothorax lichtensteini species complex (Hymenoptera:Formicidae)

    No full text
    In this paper we provide insight into the cryptic diversity and biogeographic patterns of a widely distributed Mediterranean ant species, Temnothorax lichtensteini (Bondroit, 1918), based on evidences from multiple data sources. An exploratory analysis of morphometric data, combined with sequencing of a 658bp fragment of the mitochondrial gene for the cytochrome c oxidase subunit I (CO I), indicates the existence of three distinct lineages. Divergence of two recognized genetic lineages, Western and Easten Mediterranean clusters, is not reliably supported by confirmatory analysis of morphological data. We hypothesize that this reflects incomplete speciation in separate glacial refugia and therefore discuss only biogeographic aspects of these two parapatric populations. However, the third, Peloponnese lineage is divergent in both morphology and CO I sequences and its separation from the other two lineages is convincingly confirmed. For this lineage we assume a completed speciation and describe the taxon formally as Temnothorax laconicus sp.n., the sister species of T. lichtensteini

    Life-history traits and physiological limits of the alpine fly Drosophila nigrosparsa (Diptera: Drosophilidae): A comparative study

    Get PDF
    Interspecific variation in life-history traits and physiological limits can be linked to the environmental conditions species experience, including climatic conditions. As alpine environments are particularly vulnerable under climate change, we focus on the montane-alpine fly Drosophila nigrosparsa. Here, we characterized some of its life-history traits and physiological limits and compared these with those of other drosophilids, namely Drosophila hydei, Drosophila melanogaster, and Drosophila obscura. We assayed oviposition rate, longevity, productivity, development time, larval competitiveness, starvation resistance, and heat and cold tolerance. Compared with the other species assayed, D. nigrosparsa is less fecund, relatively long-living, starvation susceptible, cold adapted, and surprisingly well heat adapted. These life-history characteristics provide insights into invertebrate adaptations to alpine conditions which may evolve under ongoing climate change
    • …
    corecore