134 research outputs found

    A Combined Experimental and Theoretical Study into the Performance of Multilayer Vanadium Dioxide Nanocomposites for Energy Saving Applications

    Get PDF
    In the built environment there is a increasing issue of heat management, with buildings expending significant energy resources to maintain comfortable living temperatures. In many parts of the world, this entails the use of both heating and cooling during daylight hours depending on ambient temperatures. Due to the variation in the desired temperature control classical solutions can become counter productive in their aim of maintaining comfortable temperatures, therefore it is important to employ adaptive solutions that vary their functionality based on circumstance. In recent years vanadium dioxide (VO2) has generated a broad range of interest due to its heat-mediated structural phase transition from a semiconductor to a metal, which occurs at a critical temperature that may be tuned via doping. The phase transition of VO2 significantly modulates its optical properties, with the high temperature metallic state absorbing and reflecting considerably more infrared radiation than the lower temperature monoclinic state due to the presence of free electrons; a window coated with a VO2 film may passively vary its transmission of infrared radiation based on the ambient temperature, in doing so reducing the temperature management energy-load. Here, we present a theoretically optimised design for a thermochromic smart window film based on a multilayer stack of silica, titania and vanadium dioxide (VO2) on a glass substrate and use the simulations to guide the fabrication process. The design makes use of coherent interference within the multi-layered structure to suppress reflection of visible light and improve the reflective component of solar modulation. In doing so, we are able simultaneously improve the visible transmission and solar modulation of the film above what would be possible with a single layer film. Additionally, the use of thin film VO2 also acts to reduce the detrimental transition hysteresis typically seen in small domain sized nanoparticulate VO2 films. The multilayer structure is fabricated via spin coating of sol-gel based precursors and subsequent annealing. After which the structure is optically characterised and results are compared with simulation along with standard single layer VO2 films and other nanoparticulate based VO2 films

    Vibrational and stochastic resonances in two coupled overdamped anharmonic oscillators

    Full text link
    We study the overdamped version of two coupled anharmonic oscillators under the influence of both low- and high-frequency forces respectively and a Gaussian noise term added to one of the two state variables of the system. The dynamics of the system is first studied in the presence of both forces separately without noise. In the presence of only one of the forces, no resonance behaviour is observed, however, hysteresis happens there. Then the influence of the high-frequency force in the presence of a low-frequency, i.e. biharmonic forcing, is studied. Vibrational resonance is found to occur when the amplitude of the high-frequency force is varied. The resonance curve resembles a stochastic resonance-like curve. It is maximum at the value of gg at which the orbit lies in one well during one half of the drive cycle of the low-frequency force and in the other for the remaining half cycle. Vibrational resonance is characterized using the response amplitude and mean residence time. We show the occurrence of stochastic resonance behaviour in the overdamped system by replacing the high-frequency force by Gaussian noise. Similarities and differences between both types of resonance are presented.Comment: 22 pages, 13 figure

    All-Silicone-based distributed bragg reflectors for efficient flexible luminescent solar concentrators

    Get PDF
    Luminescent Solar Concentrators (LSCs) have drawn huge interest recently as a technology to pave the way towards the seamless integration of photovoltaics to a range of high-value industries; from architecture and sports to leisure and consumer electronics. Additional device flexibility comes with the inherent ability to attain freeform shapes, expanding the possible fabrication methods, applications and retro-fitting techniques. Unfortunately, flexible LSCs suffer from curvature induced losses which can severely reduce their efficiency, inhibiting the potential of large-scale devices. In this work, we experimentally demonstrate an all-silicone based flexible LSC and Distributed Bragg Reflector (DBR) combination diminishing curvature induced losses. The DBRs, fabricated using scalable solution-based processes, exhibit optical properties precisely engineered to partner our LSCs, as well as high uniformity, resistance to temperature and curvature. Comprehensive modelling shows that for large-scale devices (1 m2) we can essentially decouple the performance of the LSC from curvature, steering the technology towards commercial viability

    Children of Prisoners: Their Situation and Role in Long-Term Crime Prevention

    Get PDF
    Studies suggest that maintaining family ties can help reduce the likelihood of reoffending, and that while parental imprisonment can increase a child’s likelihood to offend, positive responses to the situation can aid the children’s well-being, attitude and attainment. Drawing on findings from the recently completed EU-funded COPING Project on the mental health of children of prisoners, this chapter explores the factors that aid a child’s ability to cope with parental imprisonment and the actions that different stakeholders can take to support them. It identifies some of the mental health impacts at different stages of parental imprisonment, the roles played by non-imprisoned parents/carers and by schools, and suggests options for further clarifying the factors that help and hinder children of prisoners in the short and long term

    Proof-of-Concept of Real-World Quantum Key Distribution with Quantum Frames

    Full text link
    We propose and experimentally investigate a fibre-based quantum key distribution system, which employs polarization qubits encoded into faint laser pulses. As a novel feature, it allows sending of classical framing information via sequences of strong laser pulses that precede the quantum data. This allows synchronization, sender and receiver identification, and compensation of time-varying birefringence in the communication channel. In addition, this method also provides a platform to communicate implementation specific information such as encoding and protocol in view of future optical quantum networks. Furthermore, we report on our current effort to develop high-rate error correction.Comment: 25 pages, 14 figures, 4 table

    A distinct bacterial dysbiosis associated skin inflammation in ovine footrot

    Get PDF
    Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression
    • …
    corecore