

Multilayer vanadium dioxide nanocomposites for energy saving applications

Christian Sol¹, Johannes Schläfer¹, Tao Li¹, Ivan P. Parkin², Ioannis Papakonstantinou¹

Department of Electronic and Electrical Engineering, University College London, UK
 Department of Chemistry, University College London, UK
 www.pi-lab.co.uk

Outline:

- Introduction to vanadium dioxide smart windows
 - Review: thin film vs nanoparticle morphology
- Results:
 - 1. A thought experiment: What are the limits of thin film performance?
 - Practical multi-layered coating surpassing previous records of performance
- Summary & next steps

Vanadium dioxide smart windows

Principle of operation

Properties required:

- Transmissive to both visible and infrared light (semiconducting monoclinic)
- Transmissive to only visible light (metallic rutile)

Vanadium dioxide smart windows

Quantifying performance

Luminous transmission:

Cold state transmittance, weighted to human vision efficiency --- >60% desired for most buildings

Solar modulation:

Difference between hot and cold state transmittance, weighted to solar spectrum

Review: thin films vs nanoparticles

State of the art:

Nanoparticles

[8, 9] ACS Appl. Mater. Interfaces 2015. 7, 50, 27796-27803

Thin film

[13, 14] https://doi.org/10.1016/j.nanoen.2017.11.061

Review: thin films vs nanoparticles

State of the art:

Nanoparticles

[8, 9] ACS Appl. Mater. Interfaces 2015, 7, 50, 27796-27803 Thin film

[13, 14] https://doi.org/10.1016/j.nanoen.2017.11.061

- Thin films are favourable for narrow hysteresis
- However solar modulation is typically lower

What is the effect of hysteresis?

Example: Performance drop of > 50 % for hysteresis widths of 25 °C

Hysteresis is always detrimental however the losses are dependent on many factors

Additionally hysteresis gradient should be sharp

Scientific Reports volume 8, Article number: 13249 (2018)

Review: thin films vs nanoparticles

State of the art:

Nanoparticles

[8, 9] ACS Appl. Mater. Interfaces 2015, 7, 50, 27796-27803 Thin film

[13, 14] https://doi.org/10.1016/j.nanoen.2017.11.061

- Thin films are favourable for narrow hysteresis
- However solar modulation is typically lower

Thought experiment: what are the limits of thin film vanadium dioxide?

Index matching layers between air and cold state permittivity

Thought experiment: what are the limits of thin film vanadium dioxide?

Performance calculated for a range of thicknesses (50 - 200 nm)

Lots of work to be done!

Idealised reflectance modulation

Would require graded index materials or nanostructures

Difficult to achieve!

Desired properties:

Minimal visible reflectance in both states (400 - 700 nm)

Large modulation in the IR (700 - 2500 nm)

Idealised reflectance modulation

Can be achieved through thin film interference effects

Requires precise control of film thickness

Desired properties:

Minimal visible reflectance in both states (400 - 700 nm)

Idealised reflectance modulation

Can be achieved through thin film interference effects

Requires precise control of film thicknesses

Material requirements:

- Transparent in visible region
- Common in window industry
- Scalable fabrication method

Desired properties:

Minimal visible reflectance in both states (400 - 700 nm)

Idealised reflectance modulation

 SiO_2 $TiO_2(\alpha)$ VO_2 TiO_2 Substrate (SiO₂)

Desired properties:

Minimal visible reflectance in both states (400 - 700 nm)

Desired properties:

Minimal visible reflectance in both states (400 - 700 nm)

Desired properties:

Minimal visible reflectance in both states (400 - 700 nm)

Desired properties:

Minimal visible reflectance in both states (400 - 700 nm)

Side-on SEM of fabricated multilayer structure

All layers fabricated using scalable solution based methods

Index matches between VO₂(M) and SiO₂ substrate

- Index matches between VO₂(M) and SiO₂ substrate
- Anatase TiO₂ serves as a seeding layer for VO₂ growth
- Formed from TTIP sol-gel annealed at 550 °C

High purity vanadium dioxide formed from vanadium(IV) sol-gel annealed at 550 °C in a low oxygen environment

- Two low-temperature amorphous top layers (silica TEOS; titania TTIP) suppress visible reflection and index match between air and VO₂(M)
- Additionally prevents oxidation of VO₂ to V₂O₅

Measured reflectance spectra match well with transfer matrix theory

Desired properties:

Minimal visible reflectance in both states (400 - 700 nm)

Multilayer fabricated from sol-gel precursors

	SiO ₂		
	TiO ₂ (α)		
	VO_2		
	Т	TiO ₂	
	Substrate (SiO ₂)		
	Theory	Experiment	
Luminous transmission	60 %	48.9 %	
Solar modulation	20 %	22.1%	

Solar modulation comparable with best nanoparticle coatings and far superior to other thin film coatings

Hysteresis widths very favourable compared to high performing nanoparticle composites

Next steps:

- Tungsten doping to reduce transition temperature to near room temperature
- Evaluate overall energy saving performances using our published method
 - Scientific Reports volume 8, Article number: 13249
 (2018)
- Develop new designs that can get closer to the thin film performance limit

Conclusions:

- There is much room for improvement in thin film vanadium dioxide window coatings
- Design focus should be on improving modulation at wavelengths where solar irradiance is high
- By carefully tailoring thin film interference effects large improvements can be made using common materials

Thanks to...

What 60% luminous transmission looks like ...

https://www.ee.ucl.ac.uk/pilab

PhD supervisor: Prof. Ioannis Papakonstantinou

My email address: uk.christian.sol@gmail.com

Angular dependence

Optical constants

Derived from ellipsometry

- Two low-temperature amorphous top layers (silica TEOS; titania TTIP) suppress visible reflection and index match between air and VO₂(M)
- Additionally prevents oxidation of VO₂ to V₂O₅

Next steps:

- Tungsten doping to reduce transition temperature to near room temperature
- Evaluate overall energy saving performances using our published method
 - Scientific Reports volume 8, Article number: 13249 (2018)
- Develop new designs that can get closer to the thin film performance limit

Conclusions:

- There is much room for improvement in thin film vanadium dioxide window coatings
- Design focus should be on improving modulation at wavelengths where solar irradiance is high
- By carefully tailoring thin film interference effects large improvements can be made using common materials

uk.christian.sol@gmail.com

https://www.ee.ucl.ac.uk/pilab

Thanks to funders:

https://www.ee.ucl.ac.uk/pilab

Dr. Tao Li

Dr. Johannes Schläfer