8 research outputs found

    Reducing Conditions Favor Magnetosome Production in Magnetospirillum magneticum AMB-1

    Get PDF
    Magnetotactic bacteria (MTB) are a heterogeneous group of Gram-negative prokaryotes, which all produce special magnetic organelles called magnetosomes. The magnetosome consists of a magnetic nanoparticle, either magnetite (Fe3O4) or greigite (Fe3S4), embedded in a membrane, which renders the systems colloidaly stable, a desirable property for biotechnological applications. Although these bacteria are able to regulate the formation of magnetosomes through a biologically-controlled mechanism, the environment in general and the physico–chemical conditions surrounding the cells in particular also influence biomineralization. This work thus aims at understanding how such external conditions, in particular the extracellular oxidation reduction potential, influence magnetite formation in the strain Magnetospirillum magneticum AMB-1. Controlled cultivation of the microorganisms was performed at different redox potential in a bioreactor and the formation of magnetosomes was assessed by microscopic and spectroscopic techniques. Our results show that the formation of magnetosomes is inhibited at the highest potential tested (0 mV), whereas biomineralization is facilitated under reduced conditions (-500 mV). This result improves the understanding of the biomineralization process in MTB and provides useful information in sight of a large scale production of magnetosomes for different applications

    Alternaria and Fusarium Fungi: Differences in Distribution and Spore Deposition in a Topographically Heterogeneous Wheat Field

    No full text
    Fusarium spp. and Alternaria spp., two genera of filamentous fungi, are common colonizers of the wheat phyllosphere. Both can be pathogenic and produce mycotoxins that are harmful to consumers. Their in-field infection dynamics have been a focus for the development of new control strategies. We analysed the abundance on plant ears and spore deposition patterns of Fusarium spp. and Alternaria spp. in a topographically heterogeneous field. Abundances were assessed genetically, using qPCR-based techniques, and passive spore traps were installed for quantifying the spore deposition at different plant heights. Data loggers were placed to measure the differences in microclimate across the field. Results indicate different distribution and spore deposition patterns for the two fungi. Fusarium spp. spore and genetic abundances were higher in spots with a more humid and colder under-canopy microclimate. Alternaria spp. showed the opposite trend for genetic abundance, while its spore deposition was not correlated to any of the microclimatic conditions and was more uniform across the field. Our study extends the knowledge on the dispersal and in-field infection dynamics of Fusarium spp. and Alternaria spp., important for a better understanding of the epidemiology of these wheat pathogens. It also illustrates that topographically heterogeneous fields are a suitable environment for studying the ecology of phyllosphere-colonizing fungi

    Movement-mediated community assembly and coexistence

    Get PDF
    Schlaegel UE, Grimm V, Blaum N, et al. Movement-mediated community assembly and coexistence. BIOLOGICAL REVIEWS. 2020.Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual-level movement processes on community-level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro-macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile-link-generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour-based view on movement becomes important in understanding the responses of communities under ongoing environmental change
    corecore