17 research outputs found

    Circulating cells as predictors of secondary manifestations of cardiovascular disease: design of the CIRCULATING CELLS study

    No full text
    Biomarkers for primary or secondary risk prediction of cardiovascular disease (CVD) are urgently needed to improve individual treatment and clinical trial design. The vast majority of biomarker discovery studies has concentrated on plasma/serum as an easily accessible source. Although numerous markers have been identified, their added predictive value on top of traditional risk factors has been limited, as the biological specimen does not specifically reflect expression profiles related with CVD progression and because the signal is often diluted by marker release from other organs. In contrast to serum markers, circulating cells serve as indicators of the actual disease state due to their active role in the pathogenesis of CVD and are responsible for the majority of secreted biomarkers. Therefore, the CIRCULATING CELLS study was initiated, focusing on the cellular effectors of atherosclerosis in the circulation. In total, 714 patients with coronary artery disease (CAD) symptoms were included. Blood cell fractions (monocytes, T-lymphocytes, platelets, granulocytes, PBMC) of all individual patients were isolated and stored for analysis. Concomitantly, extensive flow cytometric characterization of these populations was performed. From each patient, a detailed clinical profile together with extensive questionnaires about medical history and life style was obtained. Various high-throughput -omics approaches (protein, mRNA, miRNA) are currently being undertaken. Data will be integrated with advanced bioinformatics for discovery and validation of secondary risk markers for adverse events. Overall, the CIRCULATING CELLS study grants the interesting possibility that it will both identify novel biomarkers and provide useful insights into the pathophysiology of CAD in patient

    Aqueous outflow - A continuum from trabecular meshwork to episcleral veins

    No full text
    In glaucoma, lowered intraocular pressure (IOP) confers neuroprotection. Elevated IOP characterizes glaucoma and arises from impaired aqueous humor (AH) outflow. Increased resistance in the trabecular meshwork (TM), a filter-like structure essential to regulate AH outflow, may result in the impaired outflow. Flow through the 360° circumference of TM structures may be non-uniform, divided into high and low flow regions, termed as segmental. After flowing through the TM, AH enters Schlemm’s canal (SC), which expresses both blood and lymphatic markers; AH then passes into collector channel entrances (CCE) along the SC external well. From the CCE, AH enters a deep scleral plexus (DSP) of vessels that typically run parallel to SC. From the DSP, intrascleral collector vessels run radially to the scleral surface to connect with AH containing vessels called aqueous veins to discharge AH to blood-containing episcleral veins. However, the molecular mechanisms that maintain homeostatic properties of endothelial cells along the pathways are not well understood. How these molecular events change during aging and in glaucoma pathology remain unresolved. In this review, we propose mechanistic possibilities to explain the continuum of AH outflow control, which originates at the TM and extends through collector channels to the episcleral veins
    corecore