467 research outputs found

    Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols

    Get PDF
    Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic–inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. However, uncertainty remains regarding the factors that contribute to observations of low hygroscopic growth below water saturation but enhanced cloud condensation nuclei (CCN) activity for a given aerosol population. Utilizing laboratory surrogates for oligomers in atmospheric aerosols, we explore the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors. Measurements of hygroscopic growth under subsaturated conditions and the CCN activity of aerosols comprised of polyethylene glycol (PEG) with average molecular masses ranging from 200 to 10 000 g mol⁻¹ and mixtures of PEG with ammonium sulfate (AS) were conducted. Experimental results are compared to calculations of hygroscopic growth at thermodynamic equilibrium conducted with the Aerosol Inorganic Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model, and the potential influence of kinetic limitations on observed water uptake was further explored through estimations of water diffusivity in the PEG oligomers. Particle-phase behavior, including the prevalence of liquid–liquid phase separation (LLPS), was also modeled with AIOMFAC. Under subsaturated relative humidity (RH) conditions, we observed little variability in hygroscopic growth across PEG systems with different molecular masses; however, an increase in CCN activity with increasing PEG molecular mass was observed. This effect is most pronounced for PEG–AS mixtures, and, in fact, an enhancement in CCN activity was observed for the PEG10000–AS mixture as compared to pure AS, as evidenced by a 15 % reduction in critical activation diameter at a supersaturation of 0.8 %. We also observed a marked increase in apparent hygroscopicity for mixtures of higher molecular mass PEG and AS under supersaturated conditions as compared to subsaturated hygroscopic growth. AIOMFAC-based predictions and estimations of water diffusivity in PEG suggest that such discontinuities in apparent hygroscopicity above and below water saturation can be attributed, at least in part, to differences in the sensitivity of water uptake behavior to surface tension effects. There is no evidence that kinetic limitations to water uptake due to the presence of viscous aerosol components influenced hygroscopic growth. For the systems that display an enhancement in apparent hygroscopicity above water saturation, LLPS is predicted to persist to high RH. This indicates a miscibility gap and is likely to influence bulk-to-surface partitioning of PEG at high RH, impacting droplet surface tension and CCN activity. This work provides insight into the factors likely to be contributing to discontinuities in aerosol water-uptake behavior below and above water saturation that have been observed previously in the ambient atmosphere

    Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols

    Get PDF
    The complexation of iron (III) with oxalic acid in aqueous solution yields a strongly absorbing chromophore that undergoes efficient photodissociation to give iron (II) and the carbon dioxide anion radical. Importantly, iron (III) oxalate complexes absorb near-UV radiation (λ > 350 nm), providing a potentially powerful source of oxidants in aqueous tropospheric chemistry. Although this photochemical system has been studied extensively, the mechanistic details associated with its role in the oxidation of dissolved organic matter within aqueous aerosol remain largely unknown. This study utilizes glycolaldehyde as a model organic species to examine the oxidation pathways and evolution of organic aerosol initiated by the photodissociation of aqueous iron (III) oxalate complexes. Hanging droplets (radius 1 mm) containing iron (III), oxalic acid, glycolaldehyde, and ammonium sulfate (pH ~ 3) are exposed to irradiation at 365 nm and sampled at discrete time points utilizing field-induced droplet ionization mass spectrometry (FIDI-MS). Glycolaldehyde is found to undergo rapid oxidation to form glyoxal, glycolic acid, and glyoxylic acid, but the formation of high molecular weight oligomers is not observed. For comparison, particle-phase experiments conducted in a laboratory chamber explore the reactive uptake of gas-phase glycolaldehyde onto aqueous seed aerosol containing iron and oxalic acid. The presence of iron oxalate in seed aerosol is found to inhibit aerosol growth. These results suggest that photodissociation of iron (III) oxalate can lead to the formation of volatile oxidation products in tropospheric aqueous aerosols

    Positive Behavior Support Systems in a Rural West Texas Middle School

    Get PDF
    Positive Behavior Support (PBS) programs are being implemented in schools in the United States to support faculty, staff, and students. The purpose of this study was to evaluate a PBS system at a rural west Texas middle school to discover what improvements are necessary for district-wide implementation and sustainability. The study drew on Bandura\u27s social learning theory, which posits that people learn from each other through observation, imitation, and modeling. PBS systems provide the framework for exhibiting specific behavior expectations so students and teachers can get the most from their educational experiences. A program evaluation was completed using discipline data from 2008-2012 from the middle school, observations at the middle school, and archival campus improvement plan results from the campus needs assessment from 2012. The research instrument used to assess the information was a pre-established PBS evaluation system called the School-Wide Evaluation Tool (SET) designed for programmatic assessment. The SET assessment tool guided the evaluation of information gathered from 100 students, 15 teachers, and an administrative team survey to highlight the strengths and weaknesses of the PBS program in the school and district, identify necessary changes to improve its effectiveness, and determine how to best implement the system district-wide. These findings were used to inform a white paper outlining how to implement a successful program and how to maintain the program over time. This evaluation provided specific steps to strengthen each component of a PBS program to ensure school-wide application and sustainability. A positive social change is experienced by students, teachers, and parents by the enhancement of a PBS system that improves student behavior in the school and district

    Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    Get PDF
    Bacterial lipopolysaccharide induces changes in intracellular NAD+ levels in a pro-inflammatory, but not an anti-inflammatory, macrophage model that are correlated with the release of the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α).</jats:p

    Future perspectives in melanoma research: meeting report from the “Melanoma Bridge”, Napoli, December 5th-8th 2013

    Get PDF
    The fourth “Melanoma Bridge Meeting” took place in Naples, December 5 to 8th, 2013. The four topics discussed at this meeting were: Diagnosis and New Procedures, Molecular Advances and Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent research in tumor biology and immunology has led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors, like BRAF and MEK inhibitors, as well as other signaling pathways inhibitors, are being tested in metastatic melanoma either as monotherapy or in combination, and have yielded promising results. Improved survival rates have also been observed with immune therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in melanoma as well. This meeting’s specific focus was on advances in targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. Significant consideration was given to issues surrounding the development of novel therapeutic targets as further study of patterns of resistance to both immunologic and targeted drugs are paramount to future drug development to guide existing and future therapies. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma

    SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease

    Get PDF
    Mitochondrial acyl-coenzyme A species are emerging as important sources of protein modification and damage. Succinyl-CoA ligase (SCL) deficiency causes a mitochondrial encephalomyopathy of unknown pathomechanism. Here, we show that succinyl-CoA accumulates in cells derived from patients with recessive mutations in the tricarboxylic acid cycle (TCA) gene succinyl-CoA ligase subunit-beta (SUCLA2), causing global protein hyper-succinylation. Using mass spectrometry, we quantify nearly 1,000 protein succinylation sites on 366 proteins from patient-derived fibroblasts and myotubes. Interestingly, hyper-succinylated proteins are distributed across cellular compartments, and many are known targets of the (NAD(+))-dependent desuccinylase SIRT5. To test the contribution of hyper-succinylation to disease progression, we develop a zebrafish model of the SCL deficiency and find that SIRT5 gain-of-function reduces global protein succinylation and improves survival. Thus, increased succinyl-CoA levels contribute to the pathology of SCL deficiency through post-translational modifications. The pathomechanism of succinyl-CoA ligase (SCL) deficiency, a hereditary mitochondrial disease, is not fully understood. Here, the authors show that increased succinyl-CoA levels contribute to SCL pathology by causing global protein hyper-succinylation.Peer reviewe

    Updated European Heart Rhythm Association practical guide on the use of non-vitamin-K antagonist anticoagulants in patients with non-valvular atrial fibrillation: Executive summary

    Get PDF
    In 2013, the European Heart Rhythm Association (EHRA) published a Practical Guide on the use of non-VKA oral anticoagulants (NOACs) in patients with atrial fibrillation (AF) (Heidbuchel H, Verhamme P, Alings M, Antz M, Hacke W, Oldgren J, Sinnaeve P, Camm AJ, Kirchhof P, European Heart Rhythm A. European Heart Rhythm Association Practical Guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation. Europace 2013;15:625-651; Heidbuchel H, Verhamme P, Alings M, Antz M, Hacke W, Oldgren J, Sinnaeve P, Camm AJ, Kirchhof P. EHRA practical guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation: executive summary. Eur Heart J 2013;34:2094-2106). The document received widespread interest, not only from cardiologists but also from neurologists, geriatricians, and general practitioners, as became evident from the distribution of &gt; 350 000 copies of its pocket version (the EHRA Key Message Booklet) world-wide. Since 2013, numerous new studies have appeared on different aspects of NOAC therapy in AF patients. Therefore, EHRA updated the Practical Guide, including new information but also providing balanced guiding in the many areas where prospective data are still lacking. The outline of the original guide that addressed 15 clinical scenarios has been preserved, but all chapters have been rewritten. Main changes in the Update comprise a discussion on the definition of 'non-valvular AF' and eligibility for NOAC therapy, inclusion of finalized information on the recently approved edoxaban, tailored dosing information dependent on concomitant drugs, and/or clinical characteristics, an expanded chapter on neurologic scenarios (ischaemic stroke or intracranial haemorrhage under NOAC), an updated anticoagulation card and more specifics on start-up and follow-up issues. There are also many new flow charts, like on appropriate switching between anticoagulants (VKA to NOAC or vice versa), default scenarios for acute management of coronary interventions, step-down schemes for longterm combined antiplatelet-anticoagulant management in coronary heart disease, management of bleeding, and cardioversion under NOAC therapy. The Updated Guide is available in full in EP Europace (Heidbuchel H, Verhamme P, Alings M, Antz M, Diener HC, HackeW, Oldgren J, Sinnaeve P, Camm AJ, Kirchhof P, Advisors. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace 2015;17:1467-1507), while additional resources can be found at the related ESC/EHRA website (www.NOACforAF.eu)
    corecore