172 research outputs found

    Antisense inhibition of methylenetetrahydrofolate reductase reduces survival of methionine-dependent tumour lines

    Get PDF
    Transformed cells have been documented to be methionine-dependent, suggesting that inhibition of methionine synthesis might be useful for cancer therapy. Methylenetetrahydrofolate reductase synthesises 5-methyltetrahydrofolate, the methyl donor utilised in methionine synthesis from homocysteine by vitamin B12-dependent methionine synthase. We hypothesised that methylenetetrahydrofolate reductase inhibition would affect cell viability through decreased methionine synthesis. Using medium lacking methionine, but containing homocysteine and vitamin B12 (M-H+), we found that nontransformed human fibroblasts could maintain growth. In contrast, four transformed cell lines (one colon carcinoma, two neuroblastoma and one breast carcinoma) increased proliferation only slightly in the M-H+ medium. To downregulate methylenetetrahydrofolate reductase expression, two phosphorothioate antisense oligonucleotides, EX5 and 677T, were used to target methylenetetrahydrofolate reductase in the colon carcinoma line SW620; 400 nM of each antisense oligonucleotide decreased cell survival by approximately 80% (P<0.01) and 70% (P<0.0001), respectively, compared to cell survival after the respective control mismatched oligonucleotide. Western blotting and enzyme assays confirmed that methylenetetrahydrofolate reductase expression was decreased. Two neuroblastoma and two breast carcinoma lines also demonstrated decreased survival following EX5 treatment whereas nontransformed human fibroblasts were not affected. This study suggests that methylenetetrahydrofolate reductase may be required for tumour cell survival and that methylenetetrahydrofolate reductase inhibition should be considered for anti-tumour therapy

    Regulating leukotriene synthesis: The role of nuclear 5-lipoxygenase

    Full text link
    Leukotrienes are lipid messengers involved in autocrine and paracrine cellular signaling. They are synthesized from arachidonic acid by the 5-lipoxygenase pathway. Current models of this enzymatic pathway recognize that a key step in initiating leukotriene synthesis is the calcium-mediated movement of enzymes, including 5-lipoxygenase, to intracellular membranes. However, 5-lipoxygenase can be imported into or exported from the nucleus before calcium activation. As a result, its subcellular localization will affect its ability to be activated by calcium, as well as the membrane to which it binds and its interaction with other enzymes. This commentary focuses on the role of 5-lipoxygenase compartmentation in determining its regulation and, ultimately, leukotriene synthesis. J. Cell. Biochem. © 2005 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49282/1/20662_ftp.pd

    Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species

    Get PDF
    Abstract Background Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. Results Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. Conclusion Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops

    Suppression of MHC class I antigen expression by N-myc through enhancer inactivation

    No full text
    Amplification of the N-myc oncogene in human neuroblastoma is associated with increased metastatic ability. We previously found that over-expression of N-myc in rat neuroblastoma tumor cells causes a dramatic reduction in the expression of MHC class I mRNA. We show here that two distinct elements in the promoter render the MHC class I genes susceptible to N-myc-mediated suppression, one of which was identified as the MHC class I gene enhancer. Our data indicate that elevated N-myc expression is associated with reduced binding of a transcription factor that activates this enhancer. As a result, the activity of the MHC class I gene enhancer is greatly diminished. Elevated expression of the N-myc oncogene in human neuroblastomas and murine pre-B lymphoid lines also correlated with reduced factor binding to the MHC class I gene enhancer. Thus, an important effect of N-myc may be to impair the function of certain cellular enhancers by altering the levels of their cognate binding proteins

    The murine retinoblastoma homolog maps to chromosome 14 near Es-10

    No full text
    Restriction fragment length variants have been exploited to map genetically Rb-1, the murine homolog of the human retinoblastoma gene. Rb-1 localized to mouse chromosome 14 on the basis of results from analysis of somatic cell hybrids. In an interspecific backcross involving Mus spretus, Rb-1 and the murine homolog of the human esterase D gene (ESD), which we refer to here as Esd, were inseparable. Furthermore, the strain distribution patterns of Rb-1 and Es-10 are the same in 31 of 32 recombinant inbred strains. Close linkage of the chromosome 14 morphological marker hairless (hr) to Rb-1 is also implied. These results localize Rb-1 on the mouse linkage map and provide close genetic markers to follow Rb-1 in somatic as well as in germline genetic experiments. Additionally, the results suggest that Es-10 is the murine homolog of ESD and provide further evidence for linkage conservation during mammalian evolution
    • 

    corecore