25 research outputs found

    Temperature-Time History of Subducted Continental-Crust, Mount Olympos Region, Greece

    Get PDF
    In the Mt. Olympos region of northeastern Greece, continental margin strata and basement rocks were subducted and metamorphosed under blueschist facies conditions, and thrust over carbonate platform strata during Alpine orogenesis. Subsequent exposure of the subducted basement rocks by normal faulting has allowed an integrated study of the timing of metamorphism, its relationship to deformation, and the thermal history of the subducted terrane. Alpine low-grade metamorphic assemblages occur at four structural levels. Three thrust sheets composed of Paleozoic granitic basement and Mesozoic metasedimentary cover were thrust over Mesozoic carbonate rocks and Eocene flysch; thrusting and metamorphism occurred first in the highest thrust sheets and progressed downward as units were imbricated from NE to SW. 40Ar/39Ar spectra from hornblende, white mica, and biotite samples indicate that the upper two units preserve evidence of four distinct thermal events: (1) 293–302 Ma crystallization of granites, with cooling from \u3e550°C to \u3c325°C by 284 Ma; (2) 98–100 Ma greenschist to blueschist-greenschist transition facies metamorphism (T∼350–500°C) and imbrication of continental thrust sheets; (3) 53–61 Ma blueschist facies metamorphism and deformation of the basement and continental margin units at T\u3c350–400°C; (4) 36–40 Ma thrusting of blueschists over the carbonate platform, and metamorphism at T∼200–350°C. Only the Eocene and younger events affected the lower two structural packages. A fifth event, indicated by diffusive loss profiles in microcline spectra, reflects the beginning of uplift and cooling to T\u3c100–150°C at 16–23 Ma, associated with normal faulting which continued until Quaternary time. Incomplete resetting of mica ages in all units constrains the temperature of metamorphism during continental subduction to T≤350°C, the closure temperature for Ar in muscovite. The diffusive loss profiles in micas and K-feldspars enable us to “see through” the younger events to older events in the high-T parts of the release spectra. Micas grown during earlier metamorphic events lost relatively small amounts of Ar during subsequent high pressure-low temperature metamorphism. Release spectra from phengites grown during Eocene metamorphism and deformation record the ages of the Ar-loss events. Alpine deformation in northern Greece occurred over a long time span (∼90 Ma), and involved subduction and episodic imbrication of continental basement before, during, and after the collision of the Apulian and Eurasian plates. Syn-subduction uplift and cooling probably combined with intermittently higher cooling rates during extensional events to preserve the blueschist facies mineral assemblages as they were exhumed from depths of \u3e20 km. Extension in the Olympos region was synchronous with extension in the Mesohellenic trough and the Aegean back-arc, and concurrent with westward-progressing shortening in the external Hellenides

    Late Cenozoic Structure and Tectonics of the Northern Mojave Desert

    Get PDF
    In the Fort Irwin region of the northern Mojave desert, late Cenozoic east striking sinistral faults predominate over northwest striking dextral faults of the same age. Kinematic indicators and offset marker units indicate dominantly sinistral strike slip on the east striking portions of the faults and sinistral-thrust slip on northwest striking, moderately dipping segments at the east ends of the blocks. Crustal blocks ∼7–10 km wide by ∼50 km long are bounded by complex fault zones up to 2 km wide at the edges and ends of each block. Faulting initiated after ∼11 Ma, and Quaternary deposits are faulted and folded. We document a minimum of 13 km cumulative sinistral offset in a north-south transect from south of the Bicycle Lake fault to north of the Drinkwater Lake fault. Paleomagnetic results from 50 sites reveal two direction groups in early and middle Miocene rocks. The north-to-northwest declinations of the first group are close to the middle Miocene reference pole. However, rock magnetic studies suggest that both primary and remagnetized directions are present in this group. The northeast declinations of the second group are interpreted as primary and 63.5° ± 7.6° clockwise from the reference pole and suggest net post middle Miocene clockwise rotation of several of the east trending blocks in the northeast Mojave domain. The Jurassic Independence Dike Swarm in Fort Irwin may be rotated 25–80° clockwise relative to the swarm north of the Garlock fault, thus supporting the inference of clockwise rotation. Using a simple-shear model that combines sinistral slip and clockwise rotation of elongate crustal blocks, we predict ∼23° clockwise rotation using the observed fault slip, or one-third that inferred from the paleomagnetic results. The discrepancy between slip and rotation may reflect clockwise bending at the ends of fault blocks, where most of our paleomagnetic sites are located. However, at least 25°–40° of clockwise tectonic rotation is consistent with the observed slip on faults within the domain plus possible “rigid-body” rotation of the region evidenced by clockwise bending of northwest striking domain-bounding faults. Our estimates of sinistral shear and clockwise rotation suggest that approximately half of the 65 km of dextral shear in the Eastern California Shear Zone over the last 10 m.y. occurred within the northeast Mojave Domain. The remainder must be accommodated in adjacent structural domains, e.g., east of the Avawatz Mountains and west of the Goldstone Lake fault. Supporting Appendices 1 and 2 are available on diskette or via Anonymous FTP from kosmos.agu.org, directory APEND (Username -- anonymous, Password = guest). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W, Washington, DC 20009 or by phone at 800-966-2481; $15.00. Payment must accompany order

    Quaternary Deformation Along the Wharekauhau Fault System, North Island, New Zealand: Implications for an Unstable Linkage Between Active Strike-Slip and Thrust Faults

    Get PDF
    The southern Wairarapa region of the North Island of New Zealand preserves a variably deformed late Quaternary stratigraphic sequence that provides insight into the temporal variability in the partitioning of contraction onto faults in the upper plate of an obliquely convergent margin. Detailed mapping, stratigraphic data, and new radiocarbon and optically stimulated luminescence ages from Quaternary units reveal the interaction between tectonics and sedimentation from ∼125 ka to(i.e., Wharekauhau fault system) at the southern end of the Wairarapa fault zone, a major oblique-slip fault in the upper plate of the Hikurangi Margin. The Wharekauhau thrust accommodated a minimum of 280 ± 60 m of horizontal shortening from ∼70 to 20 ka. The inferred shortening rate, 3.5–8.4 mm/yr, may have accounted for 11–30% of margin-normal plate motion. By ∼20 ka, the thrust was abandoned. Subsequent deformation at shallow levels occurred on a segmented fault system that accommodated/yr shortening. Active deformation in the region is partitioned between slip on (1) the more western Wairarapa-Mukamuka fault system (dominantly dextral slip but also causing local uplift of the coast); (2) a series of discontinuously expressed strike-slip faults and linking blind oblique-reverse thrusts near the trace of the inactive Wharekauhau thrust; and (3) a blind thrust fault farther to the east. The spatial and temporal complexity of the Wharekauhau fault system and the importance it has had in accommodating upper plate deformation argue for an unsteady linkage between upper plate faults and between these faults and the plate interface

    Post-Caledonian Brittle Fault Zones on the Hyperextended SW Barents Sea Margin: New Insights into Onshore and Offshore Margin Architecture

    Get PDF
    Onshore-offshore correlation of brittle faults and tectonic lineaments has been undertaken along the SW Barents Sea margin off northern Norway. The study has focused on onshore mapping of fault zones, the mapping of offshore fault complexes and associated basins from seismic interpretation, and the linkage of fault complexes onshore and offshore by integrating a high-resolution DEM, covering both onshore and offshore portions of the study area, and processed magnetic anomaly data. This study shows that both onshore and offshore brittle faults manifest themselves mainly as alternating NNE–SSW- and ENE–WSW-trending, steeply to moderately dipping, normal fault zones constituting at least two major NE-SW-trending fault complexes, the Troms-Finnmark and Vestfjorden-Vanna fault complexes. These fault complexes in western Troms bound a major basement horst (the West Troms Basement Complex), run partly onshore and offshore and link up with the offshore Nysleppen and Måsøy fault complexes. Pre-existing structures in the basement, such as foliation, lithological boundaries and ductile shear zones are shown, at least on a local scale, to have exerted a controlling effect on faulting. On a larger scale, at least two major transfer fault zone systems, one along the reactivated Precambrian Senja Shear Belt and the other, the Fugløya transfer zone, accommodate changes in brittle fault polarity along the margin. Our results suggest that distributed rifting during Carboniferous and Late Permian/Early Triassic time was followed by a northwestward localisation of displacement to the Troms–Finnmark and Ringvassøy–Loppa fault complexes during the Late Jurassic/Early Cretaceous, resulting in the formation of a short-tapered, hyperextended margin with final break-up at ~55 Ma. An uplift of the margin and preservation of the West Troms Basement Complex as a basement outlier is suggested to be due to unloading and crustal flexure of the short-tapered margin in the region

    Subduction Initiation and Early Evolution of the Easton Metamorphic Suite, Northwest Cascades, Washington

    Get PDF
    The Easton metamorphic suite, in the northwest Cascades of Washington State, preserves an inverted metamorphic sequence with ultramafic rocks underlain by amphibolite and high-temperature blueschist juxtaposed above low-temperature blueschists. The sequence is interpreted as a metamorphic sole and younger accreted rocks that formed during and after the initiation of Farallon plate subduction beneath North America in Jurassic time. Two high-temperature deformation events are recorded in the metamorphic sole at ∼10 kbar and ∼760 °C to 590 °C between \u3e167 and 164 Ma. High-temperature blueschist partly overprints the amphibolite but may have accreted separately at ∼530 °C between ca. 165 and 163 Ma. Retrograde metamorphism and post-tectonic white mica record cooling of the metamorphic sole to ∼350 °C by ca. 160 Ma. Subsequent underplating of the Darrington Phyllite occurred at ∼7 kbar and ∼320 °C prior to ca. 148 Ma until at least ca. 142 Ma. Blueschist-facies conditions and exhumation to ∼5 kbar occurred between ca. 140 and 136 Ma during later accretion and deformation of Shuksan greenschist-blueschist. Cooling ages from the high-temperature metamorphic sole require that subduction began prior to 167 Ma, before or during the formation of ophiolite-related rocks within the Northwest Cascades thrust system. Rapid cooling of the metamorphic sole below 400 °C until ca. 157 Ma through combined thermal relaxation of the subduction zone and partial exhumation was followed by at least 26 m.y. of a steady thermal state as younger units were accreted and exhumed. The record of high-pressure–low-temperature metamorphism suggests that the Easton metamorphic suite formed in a large ocean basin rather than an arc-proximal marginal basin. The metamorphic history also argues against previously suggested correlations of the Easton metamorphic suite with units of the Franciscan complex to the south in California. The temperature-time history of the Easton suite is consistent with models for the early evolution of subduction zones

    Late Holocene Rupture History of the Alpine Fault in South Westland, New Zealand

    Get PDF
    Abstract Strata and fault relationships revealed in five trenches excavated across the recent trace of the Alpine fault at the Haast, Okuru, and Turnbull Rivers, South Westland, New Zealand, record the three most recent surface-faulting events. Using back-stripping techniques to remove the three faulting events and the sedimentary units associated with the faulting restores the cross-sections to gravel-bed floodplains at the Haast and Okuru Rivers, at about A.D. 750. Horizontal and vertical offsets of stream channels and terrace risers reveal characteristic displacements of about 8–9 m dextral and up to 1 m vertical per event. Cumulative dextral displacement is 25 ± 3 m in the past three events. The most recent surface-rupture event was probably in A.D. 1717, and the next prior events were about A.D. 1230 ± 50 and about A.D.750 ± 50. The timing of these events is consistent with past large-great earth- quakes on the southern section of the Alpine fault inferred from off-fault data, but there are fewer events identified in trenches. Our three-event dataset indicates the aver- age surface-rupture recurrence interval for the South Westland section of the fault is about 480 years, much longer than the current elapsed time of 295 years. Therefore, the Alpine fault in South Westland may not be close to rupture as is often speculated

    Holocene Earthquakes and Right-lateral Slip on the Left-lateral Darrington-Devils Mountain Fault Zone, Northern Puget Sound, Washington

    Get PDF
    Sources of seismic hazard in the Puget Sound region of northwestern Washington include deep earthquakes associated with the Cascadia subduction zone, and shallow earthquakes associated with some of the numerous crustal (upper-plate) faults that crisscross the region. Our paleoseismic investigations on one of the more prominent crustal faults, the Darrington–Devils Mountain fault zone, included trenching of fault scarps developed on latest Pleistocene glacial sediments and analysis of cores from an adjacent wetland near Lake Creek, 14 km southeast of Mount Vernon, Washington. Trench excavations revealed evidence of a single earthquake, radiocarbon dated to ca. 2 ka, but extensive burrowing and root mixing of sediments within 50–100 cm of the ground surface may have destroyed evidence of other earthquakes. Cores in a small wetland adjacent to our trench site provided stratigraphic evidence (formation of a laterally extensive, prograding wedge of hillslope colluvium) of an earthquake ca. 2 ka, which we interpret to be the same earthquake documented in the trenches. A similar colluvial wedge lower in the wetland section provides possible evidence for a second earthquake dated to ca. 8 ka. Three-dimensional trenching techniques revealed evidence for 2.2 ± 1.1 m of right-lateral offset of a glacial outwash channel margin, and 45–70 cm of north-side-up vertical separation across the fault zone. These offsets indicate a net slip vector of 2.3 ± 1.1 m, plunging 14° west on a 286°-striking, 90°-dipping fault plane. The dominant right-lateral sense of slip is supported by the presence of numerous Riedel R shears preserved in two of our trenches, and probable right-lateral offset of a distinctive bedrock fault zone in a third trench. Holocene north-side-up, right-lateral oblique slip is opposite the south-side-up, left-lateral oblique sense of slip inferred from geologic mapping of Eocene and older rocks along the fault zone. The cause of this slip reversal is unknown but may be related to clockwise rotation of the Darrington–Devils Mountain fault zone into a position more favorable to right-lateral slip in the modern N-S compressional stress field

    U-Pb and Hf Isotopic Evidence for an Arctic Origin of Terranes in Northwestern Washington

    Get PDF
    New field, U-Pb, and Lu-Hf zircon data constrain the geologic history, age, and origin of the Yellow Aster Complex (YAC) in northwestern Washington, providing insight into the tectonic history of this and related Paleozoic arc terranes of the western North American Cordillera. Mapping shows that the oldest YAC rocks consist of quartzofeldspathic paragneiss (meta-arkose) and quartzose calc-silicate paragneiss (metacalcareous siltstone) in gradational contact. Paragneisses are cut by syn-tectonic and post-tectonic intrusions and faulted against granitic orthogneiss. U-Pb zircon results show that (1) maximum depositional ages of paragneisses are Silurian to Early Devonian (432– 390 Ma); (2) detrital zircons from quartzose calc-silicate paragneisses show a broad age peak from 1900 to 1000 Ma, while quartzofeldspathic paragneisses contain several distinct Precambrian age peaks, including at 2.0–1.8 Ga and 2.5–2.4 Ga; (3) paragneisses contain early Paleozoic grains with peaks ca. 420–400 and ca. 460–440 Ma; (4) pre-tectonic orthogneiss and syn-tectonic and post-tectonic dikes range from ca. 410–406 Ma; and (5) intrusive rocks contain apparently xenocrystic ca. 480–440 Ma grains. Lu-Hf isotope data show that nearly all Paleozoic zircons have negative εHf(t) values, and zircons in the meta-arkose samples are more negative than those in the calc-silicate. Zircons in several meta-arkose samples yield εHf(t) values of –40 to –57, rare in the North American Cordillera, and requires the involvement of Mesoarchean to Eoarchean crustal components. The most likely source region with crust as old as Eoarchean and early Paleozoic magmatism is the Greenland Caledonides, which implies derivation from the Arctic margin of northeastern Laurentia or Baltica. The chemistry and petrology of the igneous rocks suggest that the terrane was in a continental arc setting before, during, and after deposition of the sedimentary rocks. The data constrain deformation, metamorphism, and magmatism in the YAC to a brief period in the Early Devonian, from ca. 410 to 400 Ma. Age and Hf patterns of the YAC are similar to elements of the Yukon-Tanana and Alexander terranes. Our study shows that the complex history of metamorphosed terranes requires analysis of multiple isotopic and petrologic proxies, and U-Pb analysis of both igneous (n = 50) and detrital (n = 400) zircons to confirm or refute terrane and provenance correlations

    The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway

    Get PDF
    Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome in which severe renal cystic disease can occur. Many renal cystic diseases, including autosomal dominant polycystic kidney disease (ADPKD), are associated with absence or dysfunction of the primary cilium. We report here that hamartin (TSC1) localizes to the basal body of the primary cilium, and that Tsc1−/− and Tsc2−/− mouse embryonic fibroblasts (MEFs) are significantly more likely to contain a primary cilium than wild-type controls. In addition, the cilia of Tsc1−/− and Tsc2−/− MEFs are 17–27% longer than cilia from wild-type MEFs. These data suggest a novel type of ciliary disruption in TSC, associated with enhanced cilia development. The TSC1 and TSC2 proteins function as a heterodimer to inhibit the activity of the mammalian target of rapamycin complex 1 (TORC1). The enhanced ciliary formation in the Tsc1−/− and Tsc2−/− MEFs was not abrogated by rapamycin, which indicates a TORC1-independent mechanism. Polycystin 1 (PC1), the product of the PKD1 gene, has been found to interact with TSC2, but Pkd1−/− MEFs did not have enhanced ciliary formation. Furthermore, while activation of mTOR has been observed in renal cysts from ADPKD patients, Pkd1−/− MEFs did not have evidence of constitutive mTOR activation, thereby underscoring the independent functions of the TSC proteins and PC1 in regulation of primary cilia and mTOR. Our data link the TSC proteins with the primary cilium and reveal a novel phenotype of enhanced ciliary formation in a cyst-associated disease

    Slip and Strain Accumulation Along the Sadie Creek Fault, Olympic Peninsula, Washington

    Get PDF
    Upper-plate faulting in the Olympic Peninsula of Washington State results from relative motion of crustal blocks within the Cascadia forearc and earthquake cycle processes along the Cascadia subduction zone. We reconstruct fault slip rates since ∼14 ka on the Sadie Creek fault (SCF), north of the Olympic Mountains, using airborne lidar and field mapping of surficial deposits and landforms and optically stimulated luminescence and radiocarbon dating. The SCF is a ≥14 km-long northwest-striking, subvertical, dextral strike-slip fault with a subordinate dip-slip component. Laterally, offset debris flow channels cut into Late-Pleistocene and younger surfaces show dextral slip of 4.0–24.5 m and dip slip of 0.7–6.5 m. Re-evaluation of fault slip on the adjacent Lake Creek Boundary Creek fault (LCBCF) shows similar dextral (4.5–29.7 m) and dip slip (0.8–4.6 m). A deglacial age of 14 ka paired with the largest—and presumably oldest—slip measurements produce a minimum dextral slip rate of 1.3–2.3 mm/yr and dip-slip rate of 0.05–0.5 mm/yr. Similarities in geometry, kinematics, slip rate, and earthquake timing between the SCF and LCBCF suggest these faults represent one continuous geologic structure, the North Olympic fault zone. Geodetically constrained boundary element method models considering the effects of coseismic subduction zone stresses on upper plate structures produce comparable kinematics to those measured on the SCF and LCBCF, suggesting that the North Olympic fault zone acts as the main strain-accommodating structure in the northern Olympic Peninsula and may be modulated by stress transferred from subduction zone earthquakes
    corecore