108 research outputs found
Dust Source Activation Frequency in the Horn of Africa
Mineral dust aerosols play an important role in Earth's climate through interactions with incoming solar radiation, clouds, and the atmosphere. However, dust sources in the Horn of Africa (HoA) and controls on their activation are poorly documented. Here, we use fifteen-minute Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager dust index images to identify HoA dust source areas and to quantify their activation frequency in 1° Ă 1° resolution from 2006 to 2010. Around half of all recorded dust events occur in boreal summer, mostly between 8:00 and 16:00 local time. They are driven by meso- to regional scale meteorological mechanisms including the breakdown of the nocturnal low-level jets, land-sea breezes, and haboobs. By far the most dust-active region in the HoA is the Afar Triangle (>77% of all recorded dust events) which features the Afar and Danakil depressions and is fed by the Awash River. Despite experiencing strong and persistent southwest summer monsoon winds, dust activation on the Somali Peninsula is less significant. A composite of our map with data for North Africa and westernmost Asia shows that the HoA is a striking latitudinal anomaly with dust activation extending deep into the equatorial belt. Our data also reveal that dust activation is unusually seasonal with âŒ40% of events occurring in June and July. Our findings show that aridity and mean wind strength alone are poor predictors of dust activation and underscore the strong control exerted by the availability of readily deflated unconsolidated riverine and lacustrine sediments
Recommended from our members
The sensitivity of the colour of dust in MSG-SEVIRI Desert Dust infrared composite imagery to surface and atmospheric conditions
Infrared "Desert Dust" composite imagery taken by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), onboard the Meteosat Second Generation (MSG) series of satellites above the equatorial East Atlantic, has been widely used for more than a decade to identify and track the presence of dust storms from and over the Sahara Desert, the Middle East, and southern Africa. Dust is characterised by distinctive pink colours in the Desert Dust false-colour imagery; however, the precise colour is influenced by numerous environmental properties, such as the surface thermal emissivity and skin temperature, the atmospheric water vapour content, the quantity and height of dust in the atmosphere, and the infrared optical properties of the dust itself. For this paper, simulations of SEVIRI infrared measurements and imagery have been performed using a modelling system, which combines dust concentrations simulated by the aerosol transport model COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdelling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model) with radiative transfer simulations from the RTTOV (Radiative Transfer for TOVS) model. Investigating the sensitivity of the synthetic infrared imagery to the environmental properties over a 6-month summertime period from 2011 to 2013, it is confirmed that water vapour is a major control on the apparent colour of dust, obscuring its presence when the moisture content is high. Of the three SEVIRI channels used in the imagery (8.7, 10.8, and 12.0 ÎŒm), the channel at 10.8 ÎŒm has the highest atmospheric transmittance and is therefore the most sensitive to the surface skin temperature. A direct consequence of this sensitivity is that the background desert surface exhibits a strong diurnal cycle in colour, with light blue colours possible during the day and purple hues prevalent at night. In dusty scenes, the clearest pink colours arise from high-altitude dust in dry atmospheres. Elevated dust influences the dust colour primarily by reducing the contrast in atmospheric transmittance above the dust layer between the SEVIRI channels at 10.8 and 12.0 ÎŒm, thereby boosting red and pink colours in the imagery. Hence, the higher the dust altitude, the higher the threshold column moisture needed for dust to be obscured in the imagery: for a sample of dust simulated to have an aerosol optical depth (AOD) at 550 nm of 2-3 at an altitude of 3-4 km, the characteristic colour of the dust may only be impaired when the total column water vapour is particularly moist ('39 mm). Meanwhile, dust close to the surface (altitude < 1 km) is only likely to be apparent when the atmosphere is particularly dry and when the surface is particularly hot, requiring column moisture/13 mm and skin temperatures '314 K, and is highly unlikely to be apparent when the skin temperature is/300 K. Such low-altitude dust will regularly be almost invisible within the imagery, since it will usually be beneath much of the atmospheric water vapour column. It is clear that the interpretation of satellite-derived dust imagery is greatly aided by knowledge of the background environment
The influence of dust optical properties on the colour of simulated MSG-SEVIRI Desert Dust infrared imagery
Satellite imagery of atmospheric mineral dust is sensitive to the optical properties of the dust, governed by the mineral refractive indices, particle size, and particle shape. In infrared channels the imagery is also sensitive to the dust layer height and to the surface and atmospheric environment. Simulations of mineral dust in infrared "Desert Dust" imagery from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) have been performed, using the COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdelling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model) dust transport model and the Radiative Transfer for TOVS (RTTOV) program, in order to investigate the sensitivity of the imagery to assumed dust properties. This paper introduces the technique and performs initial validation and comparisons with SEVIRI measurements over North Africa for daytime hours during 6 months covering June and July of 2011â2013. Using T-matrix scattering theory and assuming the dust particles to be spherical or spheroidal, wavelength- and size-dependent dust extinction values are calculated for a number of different dust refractive index databases, along with several values of the particle aspect ratio, denoting the particle shape. The consequences for the infrared extinction values of both the particle shape and the particle orientation are explored: this analysis shows that as the particle asphericity increases, the extinctions increase if the particles are aligned horizontally, and decrease if they are aligned vertically. Randomly oriented spheroidal particles have very similar infrared extinction properties as spherical particles, whereas the horizontally and vertically aligned particles can be considered to be the upper and lower bounds on the extinction values. Inputting these values into COSMO-MUSCAT-RTTOV, it is found that spherical particles do not appear to be sufficient to describe fully the resultant colour of the dust in the infrared imagery. Comparisons of SEVIRI and simulation colours indicate that of the dust types tested, the dust refractive index dataset produced by Volz (1973) shows the most similarity in the colour response to dust in the SEVIRI imagery, although the simulations have a smaller range of colour than do the observations. It is also found that the thermal imagery is most sensitive to intermediately sized particles (radii between 0.9 and 2.6”m): larger particles are present in too small a concentration in the simulations, as well as with insufficient contrast in extinction between wavelength channels, to have much ability to perturb the resultant colour in the SEVIRI dust imagery
Impact of Dust Source Patchiness on the Existence of a Constant Dust Flux Layer During Aeolian Erosion Events
Dust emission fluxes during wind soil erosion are usually estimated using a dust concentration vertical gradient, by assuming a constant dust flux layer between the surface and the dust measurement levels. Here, we investigate the existence of this layer during erosion events recorded in Iceland and Jordan. Size-resolved dust fluxes were estimated at three levels between 2 and 4 m using the eddy-covariance method. Dust fluxes were found mainly constant only between the two upper levels in Iceland, the lower dust flux being often stronger and richer in coarse particles, while dust fluxes in Jordan were nearly constant across all levels. The wind dynamics could not explain the absence of a constant dust flux layer in Iceland. We show that the presence of stationary dust source patches in Iceland, related to surface humidity, created a non-uniform dust layer near the surface, named dust roughness sublayer (DRSL), where individual plumes behind each patch interact but do not fully mix. The lowest dust measurement level was probably located within this sublayer while the upper ones were located above, such that there the emitted dust became spatially well-mixed. This explains near the surface in Iceland, the more intermittent dust concentration, its low correlation with the dust concentrations above, and the richer dust flux in coarse particles due to their lower deposition contribution. Our findings highlight the importance of estimating dust fluxes above a dust blending height whose characteristics depend on the dust source patchiness caused by surface humidity or the presence of sparse non-erosive elements
Regional Saharan dust modelling during the SAMUM 2006 campaign
The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the
unique comprehensive data set of near-source dust properties during the 2006SAMUMfield campaign, the performance
of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size
distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations.
However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust
source placement by the model. While simulated winds and dust distributions are well matched for dust events caused
by dry synoptic-scale dynamics, they are often misrepresented when dust emissions are caused by moist convection or
influenced by small-scale topography that is not resolved by the model. In contrast to long-range dust transport, in the
vicinity of source regions the model performance strongly depends on the correct prediction of the exact location of
sources. Insufficiently resolved vertical grid spacing causes the absence of inversions in the model vertical profiles and
likely explains the absence of the observed sharply defined dust layers
A new framework for evaluating dust emission model development using dichotomous satellite observations of dust emission
Dust models are essential for understanding the impact of mineral dust on Earth's systems, human health, and global economies, but dust emission modelling has large uncertainties. Satellite observations of dust emission point sources (DPS) provide a valuable dichotomous inventory of regional dust emissions. We develop a framework for evaluating dust emission model performance using existing DPS data before routine calibration of dust models. To illustrate this framework's utility and arising insights, we evaluated the albedo-based dust emission model (AEM) with its areal (MODIS 500 m) estimates of soil surface wind friction velocity (u(s*)) and common, poorly constrained grain-scale entrainment threshold (u(*ts)) adjusted by a function of soil moisture (H). The AEM simulations are reduced to its frequency of occurrence, P(u(s*) > u(*ts)H). The spatio-temporal variability in observed dust emission frequency is described by the collation of nine existing DPS datasets. Observed dust emission occurs rarely, even in North Africa and the Middle East, where DPS frequency averages 1.8 %, (similar to 7 days y(-1)), indicating extreme, large wind speed events. The AEM coincided with observed dust emission similar to 71.4 %, but simulated dust emission similar to 27.4 % when no dust emission was observed, while dust emission occurrence was over-estimated by up to 2 orders of magnitude. For estimates to match observations, results showed that grain- scale u(*ts) needed restricted sediment supply and compatibility with areal u(s*). Failure to predict dust emission during observed events, was due to u(s*) being too small because reanalysis winds (ERA5-Land) were averaged across 11 km pixels, and inconsistent with u(s*)across 0.5 km pixels representing local maxima. Assumed infinite sediment supply caused the AEM to simulate dust emission whenever P(u(s*)>u(*ts)H), producing false positives when wind speeds were large. The dust emission model scales of existing parameterisations need harmonising and a new parameterisation for u(*ts) is required to restrict sediment supply over space and time
An case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine
On 24 March 2007, an extraordinary dust plume was observed in the Central European troposphere. Satellite observations revealed its origins in a dust storm in Southern Ukraine, where large amounts of soil were resuspended from dried-out farmlands at wind gusts up to 30 m s?1. Along the pathway of the plume, maximum particulate matter (PM10) mass concentrations between 200 and 1400 ?g m?3 occurred in Slovakia, the Czech Republic, Poland, and Germany. Over Germany, the dust plume was characterised by a volume extinction coefficient up to 400 Mm?1 and a particle optical depth of 0.71 at wavelength 0.532 ?m. In-situ size distribution measurements as well as the wavelength dependence of light extinction from lidar and Sun photometer measurements confirmed the presence of a coarse particle mode with diameters around 2?3 ?m. Chemical particle analyses suggested a fraction of 75% crustal material in daily average PM10 and up to 85% in the coarser fraction PM10?2.5. Based on the particle characteristics as well as a lack of increased CO and CO2 levels, a significant impact of biomass burning was ruled out. The reasons for the high particle concentrations in the dust plume were twofold: First, dust was transported very rapidly into Central Europe in a boundary layer jet under dry conditions. Second, the dust plume was confined to a relatively stable boundary layer of 1.4?1.8 km height, and could therefore neither expand nor dilute efficiently. Our findings illustrate the capacity of combined in situ and remote sensing measurements to characterise large-scale dust plumes with a variety of aerosol parameters. Although such plumes from Southern Eurasia seem to occur rather infrequently in Central Europe, its unexpected features highlights the need to improve the description of dust emission, transport and transformation processes needs, particularly when facing the possible effects of further anthropogenic desertification and climate change
Mass deposition fluxes of Saharan mineral dust to the tropical northeast Atlantic Ocean: an intercomparison of methods
Mass deposition fluxes of mineral dust to the tropical northeast Atlantic Ocean were determined within this study. In the framework of SOPRAN (Surface Ocean Processes in the Anthropocene), the interaction between the atmosphere and the ocean in terms of material exchange were investigated at the Cape Verde atmospheric observatory (CVAO) on the island Sao Vicente for January 2009. Five different methods were applied to estimate the deposition flux, using different meteorological and physical measurements, remote sensing, and regional dust transport simulations. The set of observations comprises micrometeorological measurements with an ultra-sonic anemometer and profile measurements using 2-D anemometers at two different heights, and microphysical measurements of the size-resolved mass concentrations of mineral dust. In addition, the total mass concentration of mineral dust was derived from absorption photometer observations and passive sampling. The regional dust model COSMO-MUSCAT was used for simulations of dust emission and transport, including dry and wet deposition processes. This model was used as it describes the AOD's and mass concentrations realistic compared to the measurements and because it was run for the time period of the measurements. The four observation-based methods yield a monthly average deposition flux of mineral dust of 12â29 ng mâ2 sâ1. The simulation results come close to the upper range of the measurements with an average value of 47 ng mâ2 sâ1. It is shown that the mass deposition flux of mineral dust obtained by the combination of micrometeorological (ultra-sonic anemometer) and microphysical measurements (particle mass size distribution of mineral dust) is difficult to compare to modeled mass deposition fluxes when the mineral dust is inhomogeneously distributed over the investigated area
An episode of extremely high PM concentrations over Central Europe caused by dust emitted over the southern Ukraine
International audienceOn 24 March 2007, the atmosphere over Central Europe was affected by an episode of exceptionally high mass concentrations of aerosol particles, most likely caused by a dust storm in the Southern Ukraine on the preceding day. At ground-based measurement stations in Slovakia, the Czech Republic, Poland and Germany PM10 mass concentrations rose to values between 200 and 1400 ?g m?3. An evaluation of PM10 measurements from 360 monitoring stations showed that the dust cloud advanced along a narrow corridor at speeds of up to 70 km h?1. According to lidar observations over Leipzig, Germany, the high aerosol concentrations were confined to a homogeneous boundary layer of 1800 m height. The wavelength dependence of light extinction using both lidar and sun photometer measurements suggested the dominance of coarse particles during the main event. At a wavelength of 532 nm, relatively high volume extinction coefficients (300?400 Mm?1) and a particle optical depth of 0.65 was observed. In-situ measurements with an aerodynamic particle sizer at Melpitz, Germany, confirmed the presence of a coarse particle mode with a mode diameter >2 ?m, whose maximum concentration coincided with that of PM10. A chemical particle analysis confirmed the dominance of non-volatile and insoluble matter in the coarse mode as well as high enrichments of Ti and Fe, which are characteristic of soil dust. A combination of back trajectory calculations and satellite images allowed to identify the dust source with confidence: On 23 March 2007, large amounts of dust were emitted from dried-out farmlands in the southern Ukraine, facilitated by wind gusts up to 100 km h?1. The unusual vertical stability and confined height of this dust layer as well as the rapid transport under dry conditions led to the conservation of high aerosol mass concentrations along the transect and thus to the extraordinary high aerosol concentrations over Central Europe. Our observations demonstrate the capacity of a combined apparatus of in situ and remote sensing measurements to characterise such a dust with a variety of aerosol parameters. As a conclusion, the description of dust emission, transport and transformation processes needs to be improved, especially when facing the possible effects of further anthropogenic desertification and climate change
Solid-phase phosphorus speciation in Saharan Bodélé depression dusts and source sediments
Phosphorus (P) is one of the most important limiting nutrients for the growth of oceanic phytoplankton and terrestrial ecosystems, which in turn contributes to CO2 sequestration. The solid-phase speciation of P will influence its solubility and hence its availability to such ecosystems. This study reports on the results of X-ray diffraction, electron microprobe chemical analysis and X-ray mapping, chemical extractions and X-ray absorption near-edge spectroscopy analysis carried out to determine the solid-phase speciation of P in dusts and their source sediments from the Saharan BodĂ©lĂ© Depression, the worldâs largest single source of dust. Chemical extraction data suggest that the BodĂ©lĂ© dusts contain 28 to 60% (mean 49%) P sorbed to, or co-precipitated with Fe (hydr)oxides, < 10% organic P, 21-50% (mean 32%) detrital apatite P, and 10-22% (mean 15%) authigenic-biogenic apatite P. This is confirmed by the other analyses, which also suggest that the authigenic-biogenic apatite P is likely fish bone and scale, and that this might form a larger proportion of the apatite pool (33 +/â 22%) than given by the extraction data. This is the first-ever report of fish material in aeolian dust, and it is significant because P derived from fish bone and scale is relatively soluble and is often used as a soil fertilizer. Therefore, the fish-P will likely be the most readily form of BodĂ©lĂ© P consumed during soil weathering and atmospheric processing, but given time and acid dissolution, the detrital apatite, Fe-P and organic-P will also be made available. The BodĂ©lĂ© dust input of P to global ecosystems will only have a limited life, however, because its major source materials, diatomite in the BodĂ©lĂ© Depression, undergo persistent deflation and have a finite thickness
- âŠ