Mineral dust aerosols play an important role in Earth's climate through interactions with incoming solar radiation, clouds, and the atmosphere. However, dust sources in the Horn of Africa (HoA) and controls on their activation are poorly documented. Here, we use fifteen-minute Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager dust index images to identify HoA dust source areas and to quantify their activation frequency in 1° × 1° resolution from 2006 to 2010. Around half of all recorded dust events occur in boreal summer, mostly between 8:00 and 16:00 local time. They are driven by meso- to regional scale meteorological mechanisms including the breakdown of the nocturnal low-level jets, land-sea breezes, and haboobs. By far the most dust-active region in the HoA is the Afar Triangle (>77% of all recorded dust events) which features the Afar and Danakil depressions and is fed by the Awash River. Despite experiencing strong and persistent southwest summer monsoon winds, dust activation on the Somali Peninsula is less significant. A composite of our map with data for North Africa and westernmost Asia shows that the HoA is a striking latitudinal anomaly with dust activation extending deep into the equatorial belt. Our data also reveal that dust activation is unusually seasonal with ∼40% of events occurring in June and July. Our findings show that aridity and mean wind strength alone are poor predictors of dust activation and underscore the strong control exerted by the availability of readily deflated unconsolidated riverine and lacustrine sediments