165 research outputs found

    Spatial attention: differential shifts in pseudoneglect direction with time-on-task and initial bias support the idea of observer subtypes

    Get PDF
    <p>Asymmetry in human spatial attention has long been documented. In the general population the majority of individuals tend to misbisect horizontal lines to the left of veridical centre. Nonetheless in virtually all previously reported studies on healthy participants, there have been subsets of people displaying rightward biases.</p> <p>In this study, we report differential time-on task effects depending on participants' initial pseudoneglect bias: participants with an initial left bias in a landmark task (in which they had to judge whether a transection mark appeared closer to the right or left end of a line) showed a significant rightward shift over the course of the experimental session, whereas participants with an initial right bias shifted leftwards.</p> <p>We argue that these differences in initial biases as well as the differential shifts with time-on task reflect genuine observer subtypes displaying diverging behavioural patterns. These observer subtypes could be driven by differences in brain organisation and/or lateralisation such as varying anatomical pathway asymmetries. </p&gt

    Testing for Spatial Neglect with Line Bisection and Target Cancellation: Are Both Tasks Really Unrelated?

    Get PDF
    Damage to the parietal lobe can induce a condition known as spatial neglect, characterized by a lack of awareness of the personal and/or extrapersonal space opposite the damaged brain region. Spatial neglect is commonly assessed clinically using either the line bisection or the target cancellation task. However, it is unclear whether poor performance on each of these two tasks is associated with the same or different lesion locations. To date, methodological limitations and differences have prevented a definitive link between task performance and lesion location to be made. Here we report findings from a voxel-based lesion symptom mapping (VLSM) analysis of an unbiased selection of 44 patients with a recent unifocal stroke. Patients performed both the line bisection and target cancellation task. For each of the two tasks a continuous score was incorporated into the VLSM analysis. Both tasks correlated highly with each other (r = .76) and VLSM analyses indicated that the angular gyrus was the critical lesion site for both tasks. The results suggest that both tasks probe the same underlying cortical deficits and although the cancellation task was more sensitive than the line bisection task, both can be used in a clinical setting to test for spatial neglect

    Functional Foveal Splitting: Evidence from Neuropsychological and Multimodal MRI Investigations in a Chinese Patient with a Splenium Lesion

    Get PDF
    It remains controversial and hotly debated whether foveal information is double-projected to both hemispheres or split at the midline between the two hemispheres. We investigated this issue in a unique patient with lesions in the splenium of the corpus callosum and the left medial occipitotemporal region, through a series of neuropsychological tests and multimodal MRI scans. Behavioral experiments showed that (1) the patient had difficulties in reading simple and compound Chinese characters when they were presented in the foveal but left to the fixation, (2) he failed to recognize the left component of compound characters when the compound characters were presented in the central foveal field, (3) his judgments of the gender of centrally presented chimeric faces were exclusively based on the left half-face and he was unaware that the faces were chimeric. Functional MRI data showed that Chinese characters, only when presented in the right foveal field but not in the left foveal field, activated a region in the left occipitotemporal sulcus in the mid-fusiform, which is recognized as visual word form area. Together with existing evidence in the literature, results of the current study suggest that the representation of foveal stimuli is functionally split at object processing levels

    STUDIES IN SULFUR - NITROGEN CHEMISTRY

    No full text
    Abstract not availabl
    corecore