107 research outputs found
Validation of multi-body models for simulation in authorisation of rail vehicles
An application of multi-body simulations is to reduce the amount of vehicle on-track testing and present an opportunity for saving the time and costs of vehicle acceptance in regard to running characteristics. One of the objectives of the EU project DynoTRAIN was to define criteria and limits for vehicle model validation. The paper presents investigations carried out by comparing simulations with measurements from a testing campaign using a test train with 4 types of vehicles and a total of 10 force measuring wheelsets and accompanied with continuous measurement of track irregularities and rail profiles. The simulations were performed by using several vehicle models, built in different simulation tools by different partners. The results of the investigations and the criteria and limits proposed for the validation of multi-body vehicle models, intended for simulations of on-track tests, in the framework of railway vehicle authorisations are presented.Une application des simulations multi-corps consiste à réduire la quantité d'essais en ligne et à offrir une opportunité pour économiser le temps et les coûts d'acceptation des Îhicules en ce qui concerne les caractéristiques de fonctionnement dynamiques. L'un des objectifs du projet de l'UE DynoTRAIN était de définir des critères et des limites pour la validation du modèle de Îhicule. Le document présente des recherches effectuées en comparant des simulations avec des mesures à partir d'une campagne de test utilisant un train d'essai avec 4 types de Îhicules et un total de 10 essieux de mesure de force roue-rail et accompagnés d'une mesure continue des irrégularités de voie et des profils de rail. Les simulations ont été réalisées en utilisant plusieurs modèles de Îhicules, construits dans différents outils de simulation par différents partenaires. Les résultats des enquêtes et les critères et limites proposés pour la validation des modèles de Îhicules multi-corps, destinés à des simulations de tests sur voie réelle, dans le cadre des autorisations de Îhicules ferroviaires sont présentés
Sulfolipid-1 Biosynthesis Restricts Mycobacterium tuberculosis Growth in Human Macrophages
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a highly evolved human pathogen characterized by its formidable cell wall. Many unique lipids and glycolipids from the Mtb cell wall are thought to be virulence factors that mediate host-pathogen interactions. An intriguing example is Sulfolipid-1 (SL-1), a sulfated glycolipid that has been implicated in Mtb pathogenesis, although no direct role for SL-1 in virulence has been established. Previously, we described the biochemical activity of the sulfotransferase Stf0 that initiates SL-1 biosynthesis. Here we show that a stf0-deletion mutant exhibits augmented survival in human but not murine macrophages, suggesting that SL-1 negatively regulates the intracellular growth of Mtb in a species-specific manner. Furthermore, we demonstrate that SL-1 plays a role in mediating the susceptibility of Mtb to a human cationic antimicrobial peptide in vitro, despite being dispensable for maintaining overall cell envelope integrity. Thus, we hypothesize that the species-specific phenotype of the stf0 mutant is reflective of differences in antimycobacterial effector mechanisms of macrophages
Binding of the 5′-untranslated region of coronavirus RNA to zinc finger CCHC-type and RNA-binding motif 1 enhances viral replication and transcription
Coronaviruses RNA synthesis occurs in the cytoplasm and is regulated by host cell proteins. In a screen based on a yeast three-hybrid system using the 5′-untranslated region (5′-UTR) of SARS coronavirus (SARS-CoV) RNA as bait against a human cDNA library derived from HeLa cells, we found a positive candidate cellular protein, zinc finger CCHC-type and RNA-binding motif 1 (MADP1), to be able to interact with this region of the SARS-CoV genome. This interaction was subsequently confirmed in coronavirus infectious bronchitis virus (IBV). The specificity of the interaction between MADP1 and the 5′-UTR of IBV was investigated and confirmed by using an RNA pull-down assay. The RNA-binding domain was mapped to the N-terminal region of MADP1 and the protein binding sequence to stem–loop I of IBV 5′-UTR. MADP1 was found to be translocated to the cytoplasm and partially co-localized with the viral replicase/transcriptase complexes (RTCs) in IBV-infected cells, deviating from its usual nuclear localization in a normal cell using indirect immunofluorescence. Using small interfering RNA (siRNA) against MADP1, defective viral RNA synthesis was observed in the knockdown cells, therefore indicating the importance of the protein in coronaviral RNA synthesis
Teaching Intelligence Testing in APA-Accredited Programs: A National Survey
We surveyed instructors at APA-accredited clinical and school psychology programs across the United States and Canada to determine typical teaching practices in individual intelligence testing courses. The most recent versions of the Wechsler scales (Wechsler, 1989, 1991, 1997) and the Stanford-Binet (Thorndike, Hagan & Sattler, 1986) remain the primary tests taught in this course. Course instructors emphasized having students administer intelligence tests; however, relatively few instructors reported assessing students' final level of competence with regard to their test administration skills. The intelligence testing course appears quite time-intensive for instructors, and many teach the course with the aid of a teaching assistant. When compared with previous findings, current results suggest a good measure of stability over time regarding the core issues addressed and skills taught in the intelligence testing course.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
The Regulation of Sulfur Metabolism in Mycobacterium tuberculosis
Mycobacterium tuberculosis (Mtb) has evolved into a highly successful human pathogen. It deftly subverts the bactericidal mechanisms of alveolar macrophages, ultimately inducing granuloma formation and establishing long-term residence in the host. These hallmarks of Mtb infection are facilitated by the metabolic adaptation of the pathogen to its surrounding environment and the biosynthesis of molecules that mediate its interactions with host immune cells. The sulfate assimilation pathway of Mtb produces a number of sulfur-containing metabolites with important contributions to pathogenesis and survival. This pathway is regulated by diverse environmental cues and regulatory proteins that mediate sulfur transactions in the cell. Here, we discuss the transcriptional and biochemical mechanisms of sulfur metabolism regulation in Mtb and potential small molecule regulators of the sulfate assimilation pathway that are collectively poised to aid this intracellular pathogen in its expert manipulation of the host. From this global analysis, we have identified a subset of sulfur-metabolizing enzymes that are sensitive to multiple regulatory cues and may be strong candidates for therapeutic intervention
Genome-Wide Analysis of Protein-Protein Interactions and Involvement of Viral Proteins in SARS-CoV Replication
Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV) and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp) 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12) provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins
High Content Phenotypic Cell-Based Visual Screen Identifies Mycobacterium tuberculosis Acyltrehalose-Containing Glycolipids Involved in Phagosome Remodeling
The ability of the tubercle bacillus to arrest phagosome maturation is considered one major mechanism that allows its survival within host macrophages. To identify mycobacterial genes involved in this process, we developed a high throughput phenotypic cell-based assay enabling individual sub-cellular analysis of over 11,000 Mycobacterium tuberculosis mutants. This very stringent assay makes use of fluorescent staining for intracellular acidic compartments, and automated confocal microscopy to quantitatively determine the intracellular localization of M. tuberculosis. We characterised the ten mutants that traffic most frequently into acidified compartments early after phagocytosis, suggesting that they had lost their ability to arrest phagosomal maturation. Molecular analysis of these mutants revealed mainly disruptions in genes involved in cell envelope biogenesis (fadD28), the ESX-1 secretion system (espL/Rv3880), molybdopterin biosynthesis (moaC1 and moaD1), as well as in genes from a novel locus, Rv1503c-Rv1506c. Most interestingly, the mutants in Rv1503c and Rv1506c were perturbed in the biosynthesis of acyltrehalose-containing glycolipids. Our results suggest that such glycolipids indeed play a critical role in the early intracellular fate of the tubercle bacillus. The unbiased approach developed here can be easily adapted for functional genomics study of intracellular pathogens, together with focused discovery of new anti-microbials
Identification of gene targets against dormant phase Mycobacterium tuberculosis infections
<p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects approximately 2 billion people worldwide and is the leading cause of mortality due to infectious disease. Current TB therapy involves a regimen of four antibiotics taken over a six month period. Patient compliance, cost of drugs and increasing incidence of drug resistant <it>M. tuberculosis </it>strains have added urgency to the development of novel TB therapies. Eradication of TB is affected by the ability of the bacterium to survive up to decades in a dormant state primarily in hypoxic granulomas in the lung and to cause recurrent infections.</p> <p>Methods</p> <p>The availability of <it>M. tuberculosis </it>genome-wide DNA microarrays has lead to the publication of several gene expression studies under simulated dormancy conditions. However, no single model best replicates the conditions of human pathogenicity. In order to identify novel TB drug targets, we performed a meta-analysis of multiple published datasets from gene expression DNA microarray experiments that modeled infection leading to and including the dormant state, along with data from genome-wide insertional mutagenesis that examined gene essentiality.</p> <p>Results</p> <p>Based on the analysis of these data sets following normalization, several genome wide trends were identified and used to guide the selection of targets for therapeutic development. The trends included the significant up-regulation of genes controlled by <it>devR</it>, down-regulation of protein and ATP synthesis, and the adaptation of two-carbon metabolism to the hypoxic and nutrient limited environment of the granuloma. Promising targets for drug discovery were several regulatory elements (<it>devR/devS</it>, <it>relA</it>, <it>mprAB</it>), enzymes involved in redox balance and respiration, sulfur transport and fixation, pantothenate, isoprene, and NAD biosynthesis. The advantages and liabilities of each target are discussed in the context of enzymology, bacterial pathways, target tractability, and drug development.</p> <p>Conclusion</p> <p>Based on our bioinformatics analysis and additional discussion of in-depth biological rationale, several novel anti-TB targets have been proposed as potential opportunities to improve present therapeutic treatments for this disease.</p
- …