20 research outputs found
Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight
The first flight of the Antarctic Impulsive Transient Antenna (ANITA)
experiment recorded 16 radio signals that were emitted by cosmic-ray induced
air showers. For 14 of these events, this radiation was reflected from the ice.
The dominant contribution to the radiation from the deflection of positrons and
electrons in the geomagnetic field, which is beamed in the direction of motion
of the air shower. This radiation is reflected from the ice and subsequently
detected by the ANITA experiment at a flight altitude of 36km. In this paper,
we estimate the energy of the 14 individual events and find that the mean
energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we
calculate its exposure for ultra-high energy cosmic rays. We estimate for the
first time the cosmic-ray flux derived only from radio observations. In
addition, we find that the Monte Carlo simulation of the ANITA data set is in
agreement with the total number of observed events and with the properties of
those events.Comment: Added more explanation of the experimental setup and textual
improvement
Evoked potentials in the Atlantic cod following putatively innocuous and putatively noxious electrical stimulation: a minimally invasive approach
Aspects of peripheral and central nociception
have previously been studied through recording of
somatosensory evoked potentials (SEPs) to putative
noxious stimuli in specific brain regions in a few
freshwater fish species. In the present study, we
describe a novel, minimally invasive method for
recording SEPs from the central nervous system of the
Atlantic cod (Gadus morhua). Cutaneous electric
stimulation of the tail in 15 fish elicited SEPs at all
stimulus intensities (2, 5, 10 and 20 mA) with
quantitative properties corresponding to stimulus
intensity. In contrast to previous fish studies, the
methodological approach used in Atlantic cod in the
current study uncovered a number of additional
responses that could originate from multiple brain
regions. Several of these responses were specific to
stimulation at the highest stimulus intensities, possibly
representing qualitative differences in central processing
between somatosensory and nociceptive stimuli
The African Cichlid Fish Astatotilapia burtoni Uses Acoustic Communication for Reproduction: Sound Production, Hearing, and Behavioral Significance
Sexual reproduction in all animals depends on effective communication between signalers and receivers. Many fish species, especially the African cichlids, are well known for their bright coloration and the importance of visual signaling during courtship and mate choice, but little is known about what role acoustic communication plays during mating and how it contributes to sexual selection in this phenotypically diverse group of vertebrates. Here we examined acoustic communication during reproduction in the social cichlid fish, Astatotilapia burtoni. We characterized the sounds and associated behaviors produced by dominant males during courtship, tested for differences in hearing ability associated with female reproductive state and male social status, and then tested the hypothesis that female mate preference is influenced by male sound production. We show that dominant males produce intentional courtship sounds in close proximity to females, and that sounds are spectrally similar to their hearing abilities. Females were 2â5-fold more sensitive to low frequency sounds in the spectral range of male courtship sounds when they were sexually-receptive compared to during the mouthbrooding parental phase. Hearing thresholds were also negatively correlated with circulating sex-steroid levels in females but positively correlated in males, suggesting a potential role for steroids in reproductive-state auditory plasticity. Behavioral experiments showed that receptive females preferred to affiliate with males that were associated with playback of courtship sounds compared to noise controls, indicating that acoustic information is likely important for female mate choice. These data show for the first time in a Tanganyikan cichlid that acoustic communication is important during reproduction as part of a multimodal signaling repertoire, and that perception of auditory information changes depending on the animal's internal physiological state. Our results highlight the importance of examining non-visual sensory modalities as potential substrates for sexual selection contributing to the incredible phenotypic diversity of African cichlid fishes
Direct measurement of strain rates in ductile shear zones: A new method based on syntectonic dikes
International audienc
Hearing in Fishes under Noise Conditions
Our current knowledge on sound detection in fishes is mainly based on data acquired under quiet laboratory conditions. However, it is important to relate auditory thresholds to background noise in order to determine the signal-detecting abilities of animals in the natural environment. We investigated the influence of two noise levels within the naturally occurring range on the auditory sensitivity of two hearing specialists (otophysines) and a hearing generalist. Audiograms of the goldfish Carassius auratus, the lined Raphael catfish Platydoras costatus and the pumpkinseed sunfish Lepomis gibbosus (hearing generalist) were determined between 200 and 4000Â Hz (100â800Â Hz for L. gibbosus) under laboratory conditions and under continuous white noise by recording auditory evoked potentials (AEPs). Baseline thresholds showed greatest hearing sensitivity around 500Â Hz in goldfish and catfish and at 100Â Hz in the sunfish. Continuous white noise of 110Â dBÂ RMS elevated the thresholds by 15â20Â dB in C. auratus and by 4â22Â dB in P. costatus. White noise of 130Â dBÂ RMS elevated overall hearing thresholds significantly in the otophysines by 23â44Â dB. In the goldfish, threshold did not shift at 4Â kHz. In contrast, auditory thresholds in the sunfish declined only at the higher noise level by 7â11Â dB. Our data show that the AEP recording technique is suitable for studying masking in fishes, and that the occurrence and degree of the threshold shift (masking) depend on the hearing sensitivity of fishes, the frequency, and noise levels tested. The results indicate that acoustic communication and orientation of fishes, in particular of hearing specialists, are limited by noise regimes in their environment