110 research outputs found

    Electronic Properties of Ultra-Thin Aluminum Nanowires

    Full text link
    We have carried out first principles electronic structure and total energy calculations for a series of ultrathin aluminum nanowires, based on structures obtained by relaxing the model wires of Gulseren et al. The number of conducting channels is followed as the wires radius is increased. The results suggest that pentagonal wires should be detectable, as the only ones who can yield a channel number between 8 and 10.Comment: 9 pages + 3 figures, to appear on Surface Scienc

    Calibration of the length of a chain of single gold atoms

    Get PDF
    Using a scanning tunneling microscope or mechanically controllable break junctions it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the chain of ~3.6 Angstrom was reported which is not consistent with recent theoretical calculations. Here, using precise calibration procedures for both techniques, we measure length of the atomic chains. Based on the distance between the peaks observed in the chain length histogram we find the mean value of the inter-atomic distance before chain rupture to be 2.6 +/- 0.2 A . This value agrees with the theoretical calculations for the bond length. The discrepancy with the previous experimental measurements was due to the presence of He gas, that was used to promote the thermal contact, and which affects the value of the work function that is commonly used to calibrate distances in scanning tunnelling microscopy and mechanically controllable break junctions at low temperatures.Comment: 6 pages, 6 figure

    Towards unified understanding of conductance of stretched monatomic contacts

    Full text link
    When monatomic contacts are stretched, their conductance behaves in qualitatively different ways depending on their constituent atomic elements. Under a single assumption of resonance formation, we show that various conductance behavior can be understood in a unified way in terms of the response of the resonance to stretching. This analysis clarifies the crucial roles played by the number of valence electrons, charge neutrality, and orbital shapes.Comment: 2 figure

    A rule driven approach for developing adaptive service oriented business collaboration

    Get PDF
    Current composite web service development and management solutions, e.g. BPEL, do not cater for flexible and adaptive business collaborations due to their pre-defined and inflexible nature that precludes them accommodating business dynamics. In this paper we propose a rule driven approach for adaptive business collaboration development in which rules drive and govern the development process. We introduce the Business Collaboration Development Framework (BCDF), which provides enterprizes with the context to define their capabilities and business collaboration agreements. Subsequently, we explain how rules can drive and control the business collaboration development process to develop complete, correct and consistent business collaboration agreements that are conform the conditions under which parties wish to cooperate.12 page(s

    Structure of aluminum atomic chains

    Get PDF
    First-principles density functional calculations reveal that aluminum can form planar chains in zigzag and ladder structures. The most stable one has equilateral triangular geometry with four nearest neighbors; the other stable zigzag structure has wide bond angle and allows for two nearest neighbors. An intermediary structure has the ladder geometry and is formed by two strands. All these planar geometries are, however, more favored energetically than the linear chain. We found that by going from bulk to a chain the character of bonding changes and acquires directionality. The conductance of zigzag and linear chains is 4e^2/h under ideal ballistic conditions.Comment: modified detailed version, one new structure added, 4 figures, modified figure1, 1 tabl

    Quasiclassical description of transport through superconducting contacts

    Full text link
    We present a theoretical study of transport properties through superconducting contacts based on a new formulation of boundary conditions that mimics interfaces for the quasiclassical theory of superconductivity. These boundary conditions are based on a description of an interface in terms of a simple Hamiltonian. We show how this Hamiltonian description is incorporated into quasiclassical theory via a T-matrix equation by integrating out irrelevant energy scales right at the onset. The resulting boundary conditions reproduce results obtained by conventional quasiclassical boundary conditions, or by boundary conditions based on the scattering approach. This formalism is well suited for the analysis of magnetically active interfaces as well as for calculating time-dependent properties such as the current-voltage characteristics or as current fluctuations in junctions with arbitrary transmission and bias voltage. This approach is illustrated with the calculation of Josephson currents through a variety of superconducting junctions ranging from conventional to d-wave superconductors, and to the analysis of supercurrent through a ferromagnetic nanoparticle. The calculation of the current-voltage characteristics and of noise is applied to the case of a contact between two d-wave superconductors. In particular, we discuss the use of shot noise for the measurement of charge transferred in a multiple Andreev reflection in d-wave superconductors

    Quantum transport through STM-lifted single PTCDA molecules

    Full text link
    Using a scanning tunneling microscope we have measured the quantum conductance through a PTCDA molecule for different configurations of the tip-molecule-surface junction. A peculiar conductance resonance arises at the Fermi level for certain tip to surface distances. We have relaxed the molecular junction coordinates and calculated transport by means of the Landauer/Keldysh approach. The zero bias transmission calculated for fixed tip positions in lateral dimensions but different tip substrate distances show a clear shift and sharpening of the molecular chemisorption level on increasing the STM-surface distance, in agreement with experiment.Comment: accepted for publication in Applied Physics

    On the statistical significance of the conductance quantization

    Full text link
    Recent experiments on atomic-scale metallic contacts have shown that the quantization of the conductance appears clearly only after the average of the experimental results. Motivated by these results we have analyzed a simplified model system in which a narrow neck is randomly coupled to wide ideal leads, both in absence and presence of time reversal invariance. Based on Random Matrix Theory we study analytically the probability distribution for the conductance of such system. As the width of the leads increases the distribution for the conductance becomes sharply peaked close to an integer multiple of the quantum of conductance. Our results suggest a possible statistical origin of conductance quantization in atomic-scale metallic contacts.Comment: 4 pages, Tex and 3 figures. To be published in PR

    Density functional method for nonequilibrium electron transport

    Get PDF
    We describe an ab initio method for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested Siesta approach (which uses non-local norm-conserving pseudopotentials to describe the effect of the core electrons, and linear combination of finite-range numerical atomic orbitals to describe the valence states). We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme involving the scattering states. As an illustration, the method is applied to three systems where we are able to compare our results to earlier ab initio DFT calculations or experiments, and we point out differences between this method and existing schemes. The systems considered are: (1) single atom carbon wires connected to aluminum electrodes with extended or finite cross section, (2) single atom gold wires, and finally (3) large carbon nanotube systems with point defects.Comment: 18 pages, 23 figure
    corecore