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PHYSICAL REVIEW B, VOLUME 65, 165401

Density-functional method for nonequilibrium electron transport
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IMikroelektronik Centret (MIC), Technical University of Denmark, Bldg. 345E, DK-2800 Lyngby, Denmark
2Institut de Ciecia de Materials de Barcelona, CSIC, Campus de la U.A.B., 08193 Bellaterra, Spain

(Received 29 September 2001; published 22 March 2002

We describe arab initio method for calculating the electronic structure, electronic transport, and forces
acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage
bias. Our method is based on the density-functional th€DFT) as implemented in the well testetEsTA
approach(which uses nonlocal norm-conserving pseudopotentials to describe the effect of the core electrons,
and linear combination of finite-range numerical atomic orbitals to describe the valencg $té&tdally deal
with the atomistic structure of the whole system, treating both the contact and the electrodes on the same
footing. The effect of the finite bia@ncluding self-consistency and the solution of the electrostatic prokkem
taken into account using nonequilibrium Green’s functions. We relate the nonequilibrium Green’s function
expressions to the more transparent scheme involving the scattering states. As an illustration, the method is
applied to three systems where we are able to compare our results to abrii@tio DFT calculations or
experiments, and we point out differences between this method and existing schemes. The systems considered
are: (i) single atom carbon wires connected to aluminum electrodes with extended or finite cross §értion,
single atom gold wires, and finalkjii) large carbon nanotube systems with point defects.

DOI: 10.1103/PhysRevB.65.165401 PACS nunider73.40.Cg, 72.10-d, 85.65:+h

[. INTRODUCTION of systems in equilibriurfi. There is no rigorous theory of the
validity range of these functionals and in practice it is deter-
Electronic structure calculations are today an importaniined by testing the functional for a wide range of systems
tool for investigating the physics and chemistry of new mol-where the theoretical results can be compared with reliable
ecules and materiafsAn important factor for the success of experimental data or with other more precise calculations.
these techniques is the development of first-principles meth- Here we will take this pragmatic approach one step fur-
ods that make reliable modeling of a wide range of systemsher: We will use not only the total electron density, but the
possible without introducing system dependent parameter&ohn-Sham wave functions &®na fidesingle-particle wave
Most methods are, however, limited in two aspe¢isthe  functions when calculating the electronic current. Thus we
geometry is restricted to either finite or periodic systems, an@ssume that the commonly used XC functionals are able to
(i) the electronic system must be in equilibrium. In order todescribe the electrons in nonequilibrium situations where a
address theoretically the situation where an atomickurrent flow is present, as in the systems we wish to sfudy.
molecular-scale systerftontacj is connected to bulk elec- This mean-field-like, one-electron approach is not able to
trodes requires a method capable of treating an infinite andescribe pronounced many-body effects which may appear
nonperiodic system. In the case where a finite voltage bias some cases during the transport process. Inelastic scatter-
applied to the electrodes drives a current through the contadng, e.g., by phononSwill not be considered, either.
the electronic subsystem is not in thermal equilibrium and Except for the approximations inherent in the DFT, the
the model must be able to describe this nonequilibrium situXC functional, and the use of the Kohn-Sham wave func-
ation. The aim of the present work is to develop a new firsttions to obtain a current, all other approximations in the
principles nonequilibrium electronic structure method formethod are controllable, in the sense that they can be sys-
modeling a hanostructure coupled to external electrodes wittematically improved to check for convergence towards the
different electrochemical potentiaf@e will interchange the exact result{within the given XC functional Examples of
termselectrochemical potentigand Fermi levelthroughout this are the size and extent of the basis (gdtich can be
the paper. Besides, we wish to treat the whole syst@on-  increased to completengsthe numerical integration cutoffs
tact and electrode®n the same footing, describing the elec- (which can be improved to convergencer the size of the
tronic structure of both at the same level. electrode buffer regions included in the self-consistent calcu-
Our method is based on the density-functional theoryjation (see below.
(DFT).2®In principle, the exact electronic density and total  Previous calculations for open systems have in most cases
energy can be obtained within the DFT if the exactbeen based on semiempirical approachésThe first non-
exchange-correlatiofXC) functional was available. This is equilibrium calculations with a full self-consistent DFT de-
not the case and the XC functional has to be substituted bgcription of the entire system have employed the jellium ap-
an approximate functional. The most simple form is theproximation in the electrod€s:>* Other approaches have
local-density approximatiofLDA), but recently a number of used an equilibrium first-principles Hamiltonian for the
other more complicated functionals have been proposedanostructure and described the electrodes by including
which have been shown to generally improve the descriptiosemiempirical self-energies on the outermost at6ins.
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Lately, there have been several approaches which treat the
entire system on the same footing, at the atomic 1&/ef

but so far only one of the approaches has been applied to the
nonequilibrium situation where the external leads have dif-
ferent electrochemical potentiats®?

The starting point for our implementation is tiseSTA
electronic structure approachln this method the effect of
the core electrons is described by soft norm-conserving
pseudopotentia?é and the electronic structure of the valence b
electrons is expanded in a basis set of numerical atomic or- - 5 (b)
bitals with finite range®3® The quality of the basis set can » ’
be improved at will by using multiplé-orbitals, polarization
functions, etc®® allowing us to achieve convergence of the
results to the desired level of accuragyESTA has been
tested in a wide variety of systems, with excellent restfit§.
The great advantage of using orbitals with finite rarige-
sides the numerical efficienty is that the Hamiltonian in-
teractions are strictly zero beyond some distance, which al-
lows us to partition the system unambiguously, and define
regions where we will do different parts of the calculation as
we describe in Secs. II-IV. Besides, the Hamiltonian takes F!G- 1. (@ We model the contactC) region coupled to two
the same form as in empirical tight-binding calculations, anoseml-lnflnlte left(L) and right(R) electrodes. The direction of trans-

therefore the techniques developed in this context can b%ort 's denoted by. (b) We only describe a finite section of the
straightforwardly applied Infinite system: Inside thé& and R parts the Hamiltonian matrix

. elements have bulk electrode values. The extefinaffer) region,
We have extended thelESTA computational package to B, is not directly relevant for the calculation.

nonequilibrium systems by calculating the density matrix
with a nonequilibrium Green's-functions technigifé¢?1431
We have named this nonequilibrium electronic structure code
TRANSIESTA Preliminary results obtained withRANSIESTA
were presented in Ref. 41. Here we give a detailed account We will consider the situation sketched in Figal Two
of the technical implementation and present results for theemi-infinite electrodes, left and right, are coupled via a con-
transport properties of different atomic scale systems. One dfict region. All matrix elements of the Hamiltonian or over-
the authorgJ.T) has been involved in the independent de-lap integrals between orbitals on atoms situated in different
velopment of a packageicpcaL,? which is based on simi- electrodes are zero so the coupling between the left and right
lar principles, but with some differences in implementation.electrodes takes plaaga the contact region only.
We compare results obtained with the two packages for a The region of interest is thus separated into three parts,
carbon wire connected to aluminum electrodes and show thaeft (L), contact(C) and right R). The atoms inL (R) are
they yield similar results. We present results for atomic goldassumed to be the parts of the l&fght) semi-infinite bulk
wire systems which are one of the most studied atomic scalelectrodes with which the atoms in regi@interact. The
conductors, and finally we present results for transport irHamiltonian is assumed to be converged to the bulk values in
nanotubes with defects. region L and R along with the density matrix. Thus the
The organization of the paper is the following. In the first Hamiltonian, density, and overlap matrices only differ from
part of the paper we describe how we divide our system intdulk values in theC, C-L, andC—R parts. We can test this
the contact and electrode parts and how we obtain the de@ssumption by including a larger fraction of the electrodes in
sity matrix for the nonequilibrium situation using Green’s- C (so theL andR regions are positioned further away from
functions. Here we also discuss the relation between the scdfie surfaces in Fig.)1
tering state approach and the nonequilibrium Green's- In order to obtain the transport properties of the system,
function expression for the density matrix. Then we describave only need to describe the finiteC-R part of the infinite
how this is implemented in the numerical procedures andgystem as illustrated in Fig.(ld). The density matrix which
how we solve the Poisson equation in the case of finite biaglescribes the distribution of electrons can be obtained from a
In the second part of the paper we turn to the applicationseries of Green’s-function matrices of the infinite system as
where our aim is to illustrate the method and show some ofve will discuss in detail in Sec. Ill. In principle the Green’s-
its capabilities rather than presenting detailed analysis of ouiunction matrix involves the inversion of an infinite matrix
findings. We compare our results with otray initio calcu-  corresponding to the infinite system with all parts of the
lations or experiments fdii) carbon wires connected to alu- electrodes included. We are, however, only interested in the
minum electrodes(ii) gold wires connected to gold elec- finite L-C-R part of the density matrix and thus of the
trodes, and finallyiii) infinite carbon nanotubes containing Green’s-function matrix. We can obtain this part by inverting
defects. the finite matrix,

T
S ve iy

Il. SYSTEM SETUP

165401-2
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H+3% V 0 - - I - -
R ()= g(X) + J dyGYV Y.
A Hc Vg ' 1)

0 VL Hpt3g As in the previous section there is mirect interaction be-
tween the electrodes:

whereH, , Hg andH are the Hamiltonian matrices in the

R andC regions, respectively, and, (Vg) is the interaction V(F)=VL(F)+VR(F), (3)

between thd. (R), andC regions. The coupling dof andR

to the remaining part of the semi-infinite electrodes is fully

> 0N g 0y 0 —

taken into account by the self-energids, andZg. We note V(N (r)=Vi(r) ¢, (r)=0. (4)
that to determin&/, , Vg, andH¢, we do not need to know - S _

the correct density matrix outside theC-R region, as long Our nonequilibrium situation is described by the follow-

as this does not influence the electrostatic potential inside th&g scenario: The states starting deep in the left/right elec-

region. This is the case for metallic electrodes, if th€-R  trode are filled up to the electrochemical potential of the left

region is defined sufficiently large so that all the screeningright) electrode . (ug). We construct the density matrix

takes place inside of it. from the (incoming scattering states of the left and right
The upper and lower part of the Hamiltoniam (g,  electrode:

+3 (r) are determined from two separate calculations for

the bulk systems corresponding to the bulk of the left and - - S

right electrode systems. These systems have periodic bound- D(x,y)=§|: MY (YINe(er— mr)

ary conditions in thez directions, and are solved using

Bloch’s theorem. From these calculations we also determine

o
the self-energies by cutting the electrode systems into two +§r: e (X) g7 (Y)Ne(er = pr), (5)
semi-infinite pieces using either the ideal construéficor

the efficient recursion methdd. where index andr run over all scattering states in the left

The remaining parts of the Hamiltoniavi, , Vg, andHc,  and right electrode, respectively. Note that this density ma-
depend on the nonequilibrium electron density and are detefrix only describes states i@ which couple to the continuum

mined through a self-consistent procedure. In Sec. lIl we willpf electrode states—we shall later in Sec. 11l D return to the
describe how the nonequilibrium density matrix can be calstates localized itC.

culated given these parts of the Hamiltonian, while in Sec.
IV we show how the effective potential and thereby the
Hamiltonian matrix elements are calculated from the density
matrix. Here we will rather consider the density matrix defined in
terms of coefficients of the scattering states with respect to
[1l. NONEQUILIBRIUM DENSITY MATRIX the given basigdenoted below by Greek subindexes

A. Localized nonorthogonal basis

In this section we will first present the relationship be- R .
tween the scattering state approach and the nonequilibrium z//|(x)=2 Ciu®u(X). (6)
Green’s-function expression for the nonequilibrium electron ®
density corresponding to the situation when the electrode
have different glectroghemical potentials. The scattering stat hus Egs(2) and(5) read
approach is quite transparent and has been used for nonequi-
librium first-principles calculations by McCann and
Brown** Lang and co-worker&?34¢ and Tsukada and
co-workers!’?*48 A|| these calculations have been for the
case of model jellium electrodes and it is not straightforward
how tq extenq these methods to the case of.electrodes With ap,,= 2 CIMC|*V Ne(e;— uy )+ 2 Cmcfv Ne(e,— uR)-
realistic atomic structure and a more complicated electronic ! r
structure or when localized states are present inside the con- ®
tact region. The use of the nonequilibrium Green’s function
combined with a localized basis set is able to deal with thessg
points more easily.

Cl=Cl,+ > [G(DV],,c,, z=g+is, (V)

he basis is in general nonorthogonal but this will not intro-
uce any further complications. As for the Hamiltonian, we
Here we will start with the scattering state approach anfSSUMe that the matrix elements of the oveifapre zero
make the connection to the nonequilibrium Green’s-functio etween basis functlo’ns o arjd R. The overlap is handled
expressions for the density matrix. Consider the scatterin y defining the Qreen §-funct|on matrt)}(z) as the Inverse
states starting in the left electrode. These are generated frofi (25— H), and including the term-zS in the perturbation
the unperturbed incoming statésbeled byl) of the un- matrix V. To see this we use the following equations:
coupled, semi-infinite electrodez/;P, using the retarded
Green’s functionG of the coupled system, [£1S—Holc)=0, 9

165401-3
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S—H]c/ =0, 10 1
oS (o phu(e)= —[G(e)TL(£)G(e)],n, (22

[2S—H]G(2)=1. (11)

and a similar expression fg®. Note that theS, T' and G
With these definitions we see that Eg) is fulfilled, P o e

matrices in the equations above are all matrices defined only

S—Hlc=[e,S—H]c%+Vcl=0, 12 in the scattering regioh.-C-R which is desirable from a
e, la=Le Iei ! (12 practical point of view. TheS matrix is obtained by invert-
when ing the matrix in Eq(1).
The expression derived from the scattering states is the
V=H-Ho—& (5~ S). (13 same as one would get from a nonequilibrium Green’s-
The use of a nonorthogonal basis is described further in Reféunction derivation, see, e.g., Ref. 39, whérés expressed
42 and 49. via the “lesser” Green’s function,
The density matrix naturally splits into left and right parts. 1 (=
The derivations for left and right are similar, so we will D= _f de G=(e), (23
concentrate on left only. It is convenient to introduce the left 2ml ) o
spectral density matrix, , which includes the information about the nonequilibrium oc-
cupation.
Phu(e)=2 Ciucf, (e —e), (14
! B. Complex contour for the equilibrium density matrix
and likewise a right spectral matrpg . The density matrix is In equilibrium we can combine the left and right parts in
then written as
D= f_wds L (e)NE(e— ) +ph(e)NE(e— pg). GFGTZ%G[E—ET]GT
(15 ,
i
As always we wish to expregs in terms of known(un- = - EG[(G)fl— (GH 16"
perturbed quantities, i.e.pf’u, and for this we use Eq7).
Since we are only interested in the density-matrix part cor- =—Im[G] (24

responding to the scattering regido-C-R), we note that the where. includes bothE, and s, and time-reversal sym-

coefficientsc?, for the unperturbed states are zero for basis t_ s . ) :
M =
functions () within this region. Thus metry (G'=G*) was invoked. With this Eq(15) reduces to

the well-known expression

- 0 1 (=
Clu EV (GV) v Gl (16) DZ—;I de ImM[G(e+id) ] ng(e—pu)
wherev is inside the bulk of the left electrode. Inserting this 1 .
in Eq. (14) we get =— ;Im[f de G(e+id)ne(e—p)|. (25
1
pr(e)= G(s);lm [Vg-(e)VTIG'(e)| . (170  The invocation of time-reversal symmetry mak@sa real
n matrix sinceD* =D"=D.

Here we use the unperturbed left retarded Green’s function, At this pointitis important to note that we have neglected
the infinitesimali § in Eq. (24). This means that the equality

. cp.Cor in Eq. (24) is actually not true when there are states present
QW(S):Z PR—— (18)  in C which do not couple to any of the electrodes, and thus
' I''=I'r=0 andp_=pr=0 for elements involving strictly
and the relation localized states. The localized states cannot be reached start-

ing from scattering states and are therefore not included in

Eq. (15), while they are present in E€R5). We return to this

point in Sec. Il D below.

- . All poles of the retarded Green's functiorG(z)

and thatg=g' due to time-reversal symmetry. are lying on the real axis and the function is analytic other-
We can identify the retarded self-energy, wise. Instead of doing the integral in E@5) (corresponding

to the dotted line in Fig. 2 we consider the contour in the

{gjL(s)—[gws)]f},“,:zmzI cl,clr s(e—ep), (19

— vl t
2u(e)=[Vg(e)V1], (20 complex plane defined for a given finite temperature shown
—_ _ + by the solid line in Fig. 2. Indeed, the closed contour begin-

FL(2)=il2(e) = 2u(e) )2, 21 ning with line segment, followed by the circle segmer@,

and finally we expresp’ as and running along the real axis frorEB+id) to (o +i0),

165401-4
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D=~ l|m[ de G(e+id) ne(e—pu) |, (29
™ EB
L o
- PN AL~ J e p,(e)[Ne(e— pr) —Ne(e— )], (30)
FIG. 2. The closed contout: (Joo+iA;EF—y+iA[), C,and  Or equivalently
[EB+i&8;°+i68] enclosing the Fermi poledlack dots.
D,,=Dh, +AL, (3D)
whereEB is below the bottom valence-band edge, will only
enclose the poles of(z) located atz,=i(2v+1)wkT. Ac- R 1 w )
cording to the residue theorem, Du=- ;Im[ EBdS G(e+id)ne(e—ur)|, (32

§ azee e =273 Glz). @9 25 [ dephuteine(e— pm)—nete — o). (33

where we use that the residuesmf are —kT. Thus
The spectral density matricest andpR, are not analyti-
* . cal. Thus only the “equilibrium” part of the density matrix,
EBd8 G(e+10) ne(e—p) D“(DR), can be obtained using the complex contour. Further-
more, this is a real quantity due to the tiLme—RreversaI symme-
. try, whereas the “nonequilibrium” partA=(A"™), cannot be
T fCHdZG(Z) Ne(Z=p) = 2mi kTZE G(z,). made real since the scattering states by construction break
' time-reversal symmetry due to their boundary conditions.
(27)  The imaginary part oA (AR) is in fact directly related to

the local current! However, if we are interested only in the

. The contour integral can be computed numerically for Belectron density and if we employ a basis set with real basis
given finite temperature by choosing the number of Fermi nctions (#.) we can neglect the imaginary part bf
poles to enclose. This insures that the complex contour stays "

away from the real axisthe part close t&B is not impor- _ _ ~
tan®). The Green'’s function will behave smoothly sufficiently n(r):2 b, (r1)RED,,, [, (r). (34
away from the real axis, and we can do the contour integral g

by Gaussian quadrature with just a minimum number of
points; see Fig. 3. The main variation ancomes fromng
and it is advantageous to usg as a weight function in the
Gaussian quadratur8.

To obtainA" (AR) the integral must be evaluated for a
finite level broadening,d, and on a fine grid. Even for small
voltages we find that this integral can be problematic, and
care must be taken to ensure convergence in the level broad-
ening and number of grid points. Since we have two similar
expressions for the density matrix we can get the integration
error from

C. Numerical procedure for obtaining the nonequilibrium
density matrix

In nonequilibrium the density matrix is given by
€,,=DN, +AL, —(D,, +AR). (35)
D,,=D, +A% (28) . ) . . -
The integration error arises mainly from the real axis inte-
grals, and depending on which entry of the density matrix we
EF——3.54 oV are considering eithex" or AR can dominate the error. Thus
with respect to the numerical implementation the two formu-
las Eqgs.(28) and (31) are not equivalent. We will calculate

the density matrix as a weighted sum of the two integrals

%
2 D,, =W, (DL, +A% )+(1-w,,) (D}, +AL ), (36)
1 KT=0.025 oV, A=0.63 8V, y=20kT (AL )?
JeB Wur=""T 2M R 2" (37
%% 2 11 0 9 8 7 %6 5 4 3 (A "+ (A)
v The choice of weights can be rationalized by the following

FIG. 3. Typical points for Gaussian quadrature on the contourdrgument. Assume that the result of the numerical integration

On L we employ a quadrature with a weight function equal to theis given by a stochastic variable- with mean valueA' and
Fermi function. the standard deviation is proportional to the overall size of

165401-5
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the integral, i.e.Var(AY)«(A%)2. A numerical calculation these boundary conditions the Hartree potential in the con-
with weighted integrals as in E¢B6) will then be a stochas- tact is uniquely defined, and could be computed using a real-

tic variable with the variance space techniqié or an iterative methoé:
However, in the present work, we have solved the Pois-
Var(D)ew?(AR) 2+ (1—w)2(AL)2. (38)  son’'s equation using a fast Fourier transfo(RFT) tech-

nique. We set up a supercell with theC-R region, which
can contain some extra layers of buffer bulk atoms and, pos-
sibly, vacuum(specially if the two electrodes are not of the
same nature, otherwise theandR are periodically matched
D. Localized states in thez direction). We note in passing that this is done so that

As mentioned earlier the signature of a localized state athe potential at thé.-C and C-R boundaries reproduces the
g0 in the scattering region is that the matrix elements ofoulk values, crucial for our method to be consistent. For a
', (o) andr(e,) are zero for that particular state. Local- given biasV, the L andR electrode eIectros’Fatlc potentials
ized states most commonly arise when the atomé lave ~ Need to be shifted by/2 and —V/2, respectively, and/y
energy levels below the bandwidth of the leads. The localWill therefore have a discontinuity at the cell boundary. The
As long asey<{u_,ug' the pole will be enclosed in the
complex contours and therefore included in the occupied S~ z
stateps. If on the other hand the bound state has an energy VH(r)=¢>(r)—V(L—Z—O.5), (4D)
within the bias window, i.e.u; <eq<ug the bound state

will not be included in the real axis integraAt,A®) and in  where%(r) is a periodic solution of the Poisson’s equation
the complex contour fob", but it will be included in the in the supercell, and therefore can be obtained using FET's.
complex contour forDR. Such a bound state will only be  To test the method we have calculated the induced density
correctly described by the present formalism if additionaland potential on a “capacitor” consisting of two gold11)
information on its filling is supplied. These situations are raresurfaces separated by a 12-bohr-wide tunnel gap and with a

The value ofw which minimize the variance is the weight
factor we use in Eq(37).

and seldom encountered in practice. voltage drop of 2 V. We have calculated the charge density
and the potential in this system in two different ways. First,
IV. NONEQUILIBRIUM EFFECTIVE POTENTIAL we apply the present formulatiofimplemented inTRANSI-

. . . ESTA), where the system consists of two semi-infinite gold
The DFT effective potential consists of three parts: a

) . _ electrodes, and the Hartree potential is computed as de-
pseudopotentidVys, the exchange correlation potentile,  goripeq above. Then, we calculate a similar system, but with
and the Hartree potenti®l,; . ForV,s we use norm conserv-

. . ; ; , a slab geometry, computing the Hartree potential vgth
ing Troullier-Martins pseudopotentials, determined from

34 ESTA, adding the external potential as a ramp with a discon-
stta_ndgrq gofcesdzljr For Vyc we use the LDA as param- n ity in the vacuum region. Figure 4 shows the comparison
etrized in Ref. 52.

of the results for the average induced density and potential

along thez axis. Since the tunnel gap is so wide that there is

A. Hartree potential no current running, the two methods should give very similar
The Hartree potential is a nonlocal function of the elec-results, as we indeed can observe in the figure. We can also
tron density, and it is determined through the Poisson’s equa2bserve that the potential ramp is very effectively screened

tion (in Hartree atomic unifs inside the material, so that the potential is essentially equal to
the bulk one, except for the surface layer. This justifies our
V2V (r)=—4mn(r). (399  approach for the partition of the system, the solution of the

o ) ) _ ) Poisson’s equation, and the use of the bulk Hamiltonian ma-
Specifying the electron density only in tideregion of Flg. 1 trix elements fo thd. andR regions(see below
makes the Hartree potential of this region undetermined up

to a linear ternm? o _
B. Hamiltonian matrix elements

Vu(N=¢(r)+a-r+b, (40 Having determined the effective potential we calculate the
- . ) o ] Hamiltonian matrix elements as in standandsTA calcula-
wheie ¢(r) is a solution to Poisson’s equation in regiGn  tjons. However, since we only require the density and the
anda andb are parameters that must be determined from thelectrostatic potential to be correct at theC and C-R
boundary conditions to the Poisson’s equation. In the direchoundaries, thél, andHg parts of the Hamiltoniafsee Eq.
tions perpendicular to the transport directiony) we will (1)] will not be correct. We therefore substituth and Hg
use periodic boundary conditions which fix the valuesipf ~ with the Hamiltonian obtained from the calculation of the
anda,. The remaining two parametess andb are deter- separate bulk electrode systems. Here it is important to note
mined by the value of the electrostatic potential at th€  that the effective potential within the bulk electrode calcula-
andC-R boundaries. The electrostatic potential in thand  tions usually are shifted rigidly relative to the effective po-
R regions could be determined from the separate bulk calcuential in theL and R regions, due to the choice of the pa-
lations, and shifted relative to each other by the hagVith rameter b in Eqg. (40). However, the bulk electrode
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2 - T - T ' ' ' Eq. (42) is seen to be equivalent to the LandauétilBer
- 1 formula® for the conductanceG=1/V,

V)

G o
G(V)= ﬁfﬁwds[nm—m—nF<s—MR>] It (e).
] (44)

The eigenchannels are defined in terms of ({lb&-to-right)
L , , transmission matrix,%%-6*

¢

AV

t=Ugdiag{| 7|} U], (45)
> and split the total transmission into individual channel
= contributions,
g
Tro= 2 |7l (46)
0 10 20 30 40 The collection of the individual channel transmissions
z(ay) {|7,/?} gives a more detailed description of the conductance

and is useful for the interpretation of the res§#s®1
FIG. 4. (a) The induced external potential for slab calculation

(full line), and in theTRANSIESTA calculation(dashed ling In the
slab calculation the jump in external potential is in the middle of the
vacuum region. The total potentighrbitrary unit$ is shown for A. Carbon wires/aluminum (100) electrodes

referencedotted ling. (b) Induced density. Potential and density is Short tomi b . led t wallic el
averaged in the surface plane. The density corresponds to one syr- ort monoatomic carbon wirés coupled to metaliic lec-
face unit cell trodes have recently been studied by Lang and Avéiitfs

and Laradeet al® Lang and Avouris used the Jellium ap-
¢ proximation for the electrodes, while Laraééal. used Al

HamiltoniansH, andHy can easily be shifted, using the fac . - . .
that the electrode Fermi level should be similar to the Ferm{electrodes with a finite cross section oriented along(1108)

o . direction. In this section, we will compare tH&®ANSIESTA
l(f’efl of the initial SIESTA calculation for theBLCRBsuper- method with these other first-principles electron transport

The discontinuity of the Hartree potential at the cel methods by studying the transmission through a seven-atom

boundary has no consequence in the calculation: the Hamif‘:arbon chain coupled to M00 electrodes with finite cross

tonian matrix elementinside the L-C-R region are unaf- sections as well as to the full f00) surface.

fected because of the finite range of the atomic orbitals ang We consider two systems, denoted A and B, shown in
the Hamiltonian matrix elementsutsidethe L-C-R region 'gs. §a) and(b). System A consists of a seven-atom carbon

which do feel the discontinuity are replaced by bulk vaIuesCham coupled to two electrodes of finite cross section ori-
(shifted according to the bias ented along the ALOO direction[see Fig. $a)]. The elec-

trode unit cell consists of nine Al atoms repeatedzte
+o, The ends of the carbon chain are positioned in the
V. CONDUCTANCE FORMULAS Al (100 hollow site and the distance between the ends of the

Using the nonequilibrium Green's-function formalism carbon chain and the first plane of Al atoms is fixed to be

(see, e.g., Refs. 39,40,14, and references thetleincurrent 9= 1.0 A. In system B the carbon chain is coupled to two
| through the contact can be derived, Al(100)-(2+/2x 2+2) surfaces with an Al-C coupling simi-
lar to system A. In this case the electrode unit cell contains

VI. APPLICATIONS

o two layers each with eight atoms. For both systems the con-
(V)= Gof de[ne(e—p ) —nNe(e—uR)] tact region(C) includes three layers of atoms in the left elec-
- trode and four layers of the right electrode. We use siigle-

XTr[T (e)G'(&)Tr(e)G(e)], (42)  Dbasis sets for both C and Al to be able to compare with the

results fromMcDCAL, which were obtained with that basfs.
where Gy=2e?/h. We note that this expression is not gen- The conductance of system A is dominated by the align-
eral but is valid for mean-field theory like DPfAn equiva-  ment of the lowest unoccupied molecular statgMO) state
lent formula has been derived by Todor@t al®’ [the of the isolated chain to the Fermi level of the electrodes
equivalence can be derived using E81) and the cyclic through charge transfét. The coupling of the LUMO,

invariance of the trace in E¢42)]. charge transfer, and total conductance can be varied continu-
With the identification of thelleft-to-right) transmission ously by adjusting the electrode-chain separatfoRor our
amplitude matrixt,>® value of the electrode-chain separation we get a charge trans-
fer of 1.43 and 1.28e to the carbon wire in systems A and
t(e)=[Tr(e)]¥?G(e)[T ()] (43) B, respectively. This is slightly larger than the values ob-
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(a) ;_‘17* R | ooe I?'\.(i_ g =
PP AN LA R >
g i e ® e ~
»#»’—'4 ) :4*?-'4 »'-’«b \+>’-'4 »”‘*‘;4 »‘#4 »v-’<+ 53]
CREEYS EENELREEY =
50 ——— . ; : 5 .
(/(i) 0 = with(%lut ca.rbonchlain\ I l I b 0_5 L _|4 L _|3 L —IZ L
> 1 E~(, +HL)72 (V)
- =50 : j A : —_
>“’_100 ANAVAVAVAYAY; | FIG. 6. (a) Zero-bias transmission coefficient(E,0 V), for
: oA Vi v .‘,.' Vi 4 the seven-atom carbon chain with finite cross sectidd@0) elec-
-0 C;Ibon il IR — trodes(system A. (b) Transmission coefficient at 1 W[(E,1 V).
I M T T Solid lines show results obtained witRANSIESTA and dotted lines
(d)06 U I B L B A result_s obtained withucpcAL. The verticg! dashed ques indicated
- Induced potential at 1 V bias 7] the window betweem, andug. The position of the eigenstates of
<> 04 7] the carbon wire subsystem are also indicated at the top axis.
L 0'2__ — SystemA| |
% o ---- SystemB | — Hamiltonian to find the position of the carbon eigenstates in
3 ook AN e ; _— the presence of the Al electrodes. Within the energy window
04 kY ) . 3 shown in Figs. 6 and 7 we find four doubly degenerate
[ 0 0o 0 o 4 o f s states (3r,4m,5,67). The positions of the eigenstates are
-10 -5 o 3 10 15 indicated above the transmission curves. Each doubly degen-
z(A) erate state can contribute to the transmission with 2 at most.

Generally, the position of the carban states give rise to a
slow variation in the transmission coefficient, and the fast
variation is related to the coupling between different scatter-
ing states in the electrodes and the carkostates. For in-

FIG. 5. (a) The seven-atom carbon chain with finite cross sec-
tion AI(100 electrodes(system A. (b) The carbon chain with
Al(100)-(2\/2x 2+2) electrodegsystem B. (c) The effective po-

tential of system Adashed and system Bsolid), together with the . .
effective potential of the corresponding bare electrode syst@ins. stance, in system A, there are two energy interyald.9,

The self-consistent effective potential for an external bias of 1 V__ 1.7] ar&d L0'7’14’ V\_/here the t.ranﬁmlssmn Coeff|C|ent| IS
(the zero-bias effective potential has been subtracted zero, and the scattgrlng states in t esg energy intervals are
therefore not coupling to the carbon wire. Note how these
) 48 i . zero transmission intervals are doubled at finite bias, since
tained by Lang and Avourts for Jellium %Lectrodes, butin the scattering states of the left and right electrode are now
good agreement with results fromcDCAL. displaced.

To facilitate a more direct comparison between the meth-  The energy dependence of the transmission coefficient is

ods we show in Fig. 6 the transmission coefficient of systenyjite different in system B compared to system A. This is
A calculated both withinTRANSIESTA (solid) and MCDCAL

(dotted. For both methods, we have used identical basis sets
and pseudopotentials. However, several technical details in
the implementations differ and may lead to small differences
in the transmission spectra. The main implementation differ-
ences between the two methods are related to the calculation
of Hamiltonian parameters for the electrode region, the solu-
tion of the Poisson’s equation, and the complex contours
used to obtain the electron chafgeThus there are many
technical differences in the two methods, and we therefore
find the close agreement in Fig. 6 very satisfactory.

In Fig. 7 we show the corresponding transmission coeffi- | L
cients for system B. It can be seen that the transmission S5 4 3 2 41 0 1 2 3 4 5
coefficient for zero bias at=u is close to 1 for both sys- E—(u +1 )2 (eV)
tems, thus they have similar conductance. However, the de-
tails in the transmission spectra differs much from system A.  FIG. 7. Transmission coefficient§(E,0 V) andT(E,1 V) for
In order to get some insight into the origin of the different the seven-atom carbon chain with AI(]_OO)@X 2\/5) electrodes
features we have projected the self-consistent Hamiltoniagsystem B. The position of the eigenstates of the carbon wire sub-
onto the carbon orbitals, and diagonalized this subspacsystem are also indicated at the top axis.

T(E,0V)

T(E,1V)
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mainly due to the differences in the electronic structure of A B
the surface compared to the finite-sized electrode. However, ( ) ( )
the electronic states of the carbon wires are also slightly

different. We fing th;’it ther states IieAO.i eV higher Ln en- Y010 10)0) ©J0)10)0)0)
ergy in system B relative to system A. As mentioned previ-

ously, the charge transfer to the carbon chain is different in O%%%%O O(?gggo
the two systems. The origin of this is related to a larger work 0100010
function (~1 eV) of the surface relative to the lead. We C00QOO0

note that the calculated work function of the surface is 0.76 O 00O O
eV higher than the experimental work function of A4.4 O O
eV),%® which may be due to the use of a sindleasis set O O

and the approximate exchange-correlation descrigtion. eJolo)e)e O

~ In Fig. 5(d), we show the changes in the effective poten- 0000 010)0)0]e)
tial when a 1-V bias is applied. We find that the potential O OO O
does not drop continuously across the wire. In system A, the 0000 OO0 O
main potential drop is at the interface between the carbon OO0 JO XO) 00DO O
wire and the right electrode, while in system B the potential 00000

drop takes place at the interface to the left electrode. This 00000
should be compared to the Jellium results, where there is a 00®o e

more continuous voltage drop through the sysféme do

not vet understand the details of the origin of these voltage FIG. 8. Models used for the gold wires calculations. The white
y 9 9%toms correspond to contact regiGnwhile the gray atoms corre-

d_r(_)ps. Hor:/vevler, It Seems that thef Vr(:ltagle drog IS Vehry Sensfpond to thel and R regions in Fig. 1. The black atoms are only
Sfmve FO the ?e_Ctron'C Structurg O_ the ,e ectrodes. Thus W&hcluded in the initialsiesTa calculation and can be added in order
find it is qualitatively and quantitatively important to have a, yie|q 4 better initial density matrix for the subsequUERANSI-
good description of the electronic structure of the electrodes:gra run, We have used 2) and 3@) surface layers in the contact
region.
B. Gold wires/gold (111) electrodes

The conductance of single atom gold wires is a bench-
mark in atomic scale conduction. Since earlyour model of the electrode system to a small unit cell (3
experiment®~"®numerous detailed studies of their conduc-<3) and use only thd” point in the transversgsurface
tance have been carried out through the 1990s until (see, directions. We have used a sindleplus polarization basis
e.g., Ref. 71 for a review More recently the nonlinear set of nine orbitals corresponding to the &nd 66,p) states
conductanc€~"® has been investigated and the atomicof the free atom. In one calculatidthe wire labeledc) in
structuré®~"® of these systems has been elucidated. ExperiFig. 9] we used doublg-representation of thesstate as a
ments show that chains containing more than five golttheck and found no significant change in the results. The
atoms® can be pulled and that these can remain stable for apange of interaction between orbitals is limited by the radii of
extended period of time at low temperature. A large numbefhe atomic orbitals to 5.8 A, corresponding to the fourth
of experiments employing different techniques and under &gearest neighbor in the bulk gold crystal or a range of three
variety of conditionsambient pressure and UHV, room, and ¢qnsecutive layers in theL11] direction. We have checked
liquid-He temperature all show that the conductance . the pand structure of bulk gold with this basis set is in
at .lOW bias is very close' to 15, and sevgral experiments g, agreement with that obtained with more accurate basis
point to the fact that this is due to a single conductancegetS for the occupied and lowest unoccupied bands.

eigenchanngl®-82 : i . :
Several theoretical investigations have addressed the sta- We have considered two different configurations of our

bility and morphologf®28 and the conductanfe®®88 of calculation cell, shown in Fig. 8. In most calculations we

atomic gold chains and contacts using DFT. However, for th include two surfage Iayerg n the contact regi@) where
. ; he electron-density matrix is free to relax and we have
evaluation of the conductance, these studies have neglecte L
. checked that these results do not change significantly when
the presence of valenakelectrons and the scattering due to

. . ST .~ three surface layers are included on both electrodes. We ob-
the nonlocal pseudopotential. This approximation is not jus-

tified a priori: for example, it is clear that the bands duedto tain the |n|_t|{:1I_ guess for a denS|fcy matrix at zero-bias _vol_tage
. R T from an initial SIESTA calculation with normal periodic
states are very close to the Fermi level in infinite linear

. A boundary conditions in the transpdg direction® In order
cha|n§ of gold ar!d_thls_mgllcates that these could play a rOletb make this density matrix as close to thRANSIESTA den-
especially for a finite bia¥* ; . . . )

sity matrix we can include extra layers in the interface be-
tween thel andR regions(black atoms in Fig. Bto simulate
bulk. In the case of two different materials forandR elec-

In this section we consider gold wires connected betweetrodes many layers may be needed, but in this case we use
the (111 planes of two semi-infinite gold electrodes. In order just one layer. We use the zero-bie@ANSIESTA density ma-
to keep the computational effort to a minimum we will limit trix as a starting point forRANSIESTA runs with finite bias.

1. Model

165401-9
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FIG. 10. The change in total energy of the relaxed wires during
the elongation shown in Fig. 9 as calculated isiesTA run. The
force determined from the slopes of the line segments is shown
also.

atomic gold chains, free standing clusters, and short wires
suspended between two pyramidal tips. In general the struc-
ture of the wires will be determined by the fixed distance
between the electrodes and the wires will therefore most
probably be somewhat compressed or stretched.

Here we have considered wires with a length of three
atoms and situated between ttid.1) electrodes with differ-
ent spacing. Initially the wire atoms are relaxed at zero volt-
age biaguntil any force is smaller than 0.02 eVyAnd for
fixed electrode atoms. The four relaxed wires for different
electrode spacings are shown in Figéa)9(d). The values
for bond length and bond angle of the first wita), r
=2.57 A a=135°, are close to the values found in Ref. 84
for the infinite periodic wires at the minimum of energy with
respect to unit-cell lengthr&2.55 A a=131°).

In Fig. 10 we show the total energy and corresponding
force as evaluated in a standastSTA calculation for the
wires as a function of electrode spacing. The force just be-
fore the stretched wire breaks has been meadttédnd is
found to be 1.5:0.3 nN independent of chain length. The
total transmission resolved in energy is shown in Fig. 11 for
zero bias. The conductance in units Gf, is given by
T1o(EF) which is 0.91, 1.00, 0.95, and 0.94 for tf®, (b),

(c), and (d) structures of Fig. 9, respectively. It is striking
that the measured conductance in general stays quite con-
stant as the wire is being stretched. Small dips below&d

can be seen, which might be due to additional atoms being
introduced into the wire from the electrodes during the
pull.®? It is interesting to note that the value féa) is quite
close to the conductance dip observed in Ref. 91 and we

(c), and 9.9(d) A between the twq111) surfaces. All wires have  gpeculate that this might correspond to the addition of an
been relaxed while the surface atoms are kept fixed. Distances aggtra atom in the chain which will then attain a zigzag struc-

shown in A.

2. Bent wires

In a previous study by $@hez-Portal and co-worke?$a

ture which is subsequently stretched out to a linear configu-
ration.

It can be seen from the corresponding eigenchannel
decomposition in Fig. 12 that the conductance is due

zigzag arrangement of the atoms was found to be energetio a single, highly transmitting channel, in agreement
cally preferred over a linear structure in the case of infinitewith the experiments mentioned earlier and previous
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FIG. 11. The total transmission of the wires shown in Fig. 9 vs
electron energy. -1 -0.5
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calculation$2°81488This channel is composed of thg=0

. 14 .
orbitals:" About 0.5-1.0 eV below the Fermi energy trans- g 12, Eigenchannel transmissions of the wires in Fig. 9. Only

mission through additional channels is seen. These afyee channels give significant contribution within the energy range
mainly derived from thé,= 1 orbitals and are degenerate for gpown.

the wires without a bend, due to the rotational symmetry.

We have done a calculation for a five atom long wire. Thenonlinearities are related with presence of contaminants. On
relaxed structure is shown in Fig. 13. We note that while thehe theoretical sids,p,d tight-binding calculation$:’*have
bond |ength5 are the same within the Wire, thereis a diﬂ:ere%een performed for V0|tages up to 2.0 V for atomic g0|d

bond angle (143° in the middle, 150° at the electrodé®  contacts betwee(100), (111), and(110) electrodes. Todorov
find that the transmission at zero bias is even closer to unitgt a1 9394 addressed the forces and stability of single atom

compared with the three atom case and find a conductance of
0.99 G, despite its zigzag structusee Fig. 14 o
TAve

e

3. Finite bias results

Most experimental studies of atomic wires have been vl
done in the low-voltage regimeV(0.25 V). Important
guestions about the nonlinear conductance, stability against
electromigration, and heating effects arises in the high-
voltage regime. It has been found that the single atom gold
wires can sustain very large current densities, with an inten-
sity of up to 80 uA corresponding to 1-V bia& Sakai and
co-workeré?®2™ have measured the conductance distribu-
tions (histogram$ of commercial gold relays at room tem-
perature andta4 K and found that the prominentG, peak
height decreases for high bias€s-1.5 V and disappears
around 2 V. It is also observed that there is no shift in the 1
G, peak position which indicates that the nonlinear conduc-
tance is small. In agreement with this Hanseral.”* re-
ported linear current-voltage V) curves in scanning tunnel FIG. 13. Relaxed structure of a five atom long chain. Distances
microscope (STM)-UHV experiments and suggested that are shown in A.
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FIG. 14. The total transmission of all channels and eigenchannel
transmissions of the five-atom long chain shown in Fig. 13.

gold wires within a single orbital model combined with the
fixed atomic charge condition. E- (W +ug)2 (eV)
Here we study the influence of such high currents and _ o _
FIG. 15. The eigenchannel transmissions for bias voltages of

fields on one of the wire structurd§ig. 9c)]. We have ! >
performed the calculations for voltages from 0.25 to 2.0 V in%-2; 1. 1.5, and 2V for the wire shown in Fig. 9. The conductance
steps of 0.25 V. In Fig. 15 we show the eigenchannel transS determined from the average total transmission fpgmo ug.

missions for finite applied bias. For a bias of 0.5 V we see aThe voltage window is shown with thick dashed lines.

behavior similar to the 0-V situation except for the dlsap_the metallic wire will drive the electronic distribution close

pearance of the resonance structure about 0.7 eV dhove to charge neutrality. This would not occur in the case of a
Fig. 12c). For 0.5-V bias the degenerate peak 0.75 eV below 9 Y

H 7,31
Er which is derived from thd,=1 orbitals is still intact honmetallic contact! .

: o . . The number of valence electrons on the gold atoms is
whereas this feature diminishes gradually for higher b'astlose t0 11. There is some excess charge on the wire atoms
Thus mainly a single channel contributes for finite bias up toand first suﬁace layeramainly taken from the second sur-
2 V. It is clear from Fig. 15 that the transmissions for zero
volts cannot be used to calculate the conductance in the high-
voltage regime and underlines the need for a full self-
consistent calculation.

The calculated-Vcurve is shown in Fig. 16. We observe - g
a significant decrease in the conductan@&/} for high volt-
ages. This is in agreement with tight-binding resdltshere
a 30% decrease was observed for a bias of 2 V. For wires 100 D
attached to(100) and (110 electrode¥"’* a quite linear -
[-Vwas reported for the same voltage range. O

In Figs. 17 and 18 we plot the voltage drop, i.e., the
change in total potential between the cases of zero and finite ’,Q’
bias, for the case of 1 and 2 V, respectively. We observe that 50 - @/'@ —
the potential drop has a tendency to concentrate in between <
the first two atoms in the wire in the direction of the current.
A qualitatively similar behavior was seen in the tight-binding
results for both(100) and (111) electrode¥* and it was sug-
gested to be due to the details of the electronic structure with 0 ! | . | . | .
a high density of states just below the Fermi energy derived 0 0.5 1 L5 2
from the d orbitals (and their hybridization witts orbitals.
The arguments were based on the atomic charge neutrality
assumption. In the present calculations, this assumption is FIG. 16. The current-voltagd {V) curve for the wire shown in
not made, although the self-consistency and the screening iig. 9.

150 T T T T T

Lua)
\
S
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FIG. 17. The voltage drop for applied bias of 1 V in a plane  FIG. 18. Same as in Fig. 17 for a bias of A&bntours separated
going through the wire atoms. In the surface plot the wire atomby 0.2 e\j.
positions are shown as black spheres. The contour plot below the )
solid contours(separated by 0.1 e\Vshows the voltage drop. The C. Conductance in nanotubes
dashed contours are shown to indicate the atomic positions. Finally, we have applied our approach to the calculation
) ) ~of conductance of nanotubes in the presence of point defects.
face layers The behavior of the charge with voltage is |y particular the Stone-WaléSW) defect® (i.e., a pentagon-
sh_own in Fig. 19. _The _minimun"_n in vo_Itage dr(_)p arou_nd theheptagon double pairand a monovacancy in 60, 10
middle atom for high biagsee Fig. 18is associated with a panotube. The atomic geometries of these structures are ob-
decrease in its excess charge for high bias. The decreaseigned from asiesTa calculation with a 280-atom supercell
found mainly in thes andd,; orbitals of the middle atom.  (seven bulk unit cells where the ionic degrees of freedom
are relaxed until any component of the forces is smaller than
0.02 eV/A. We use a singlg-basis set, although some tests
We end this section by showing the forces acting on thevere made with a doublg-basis, producing very similar
three atoms in the wire for finite bias in Fig. 20. We evaluateresults. The one-dimensional Brillouin zone is sampled with
the forces for nonequilibrium in the same manner as fofive k points. The forces do not present any significant varia-
equilibrium siESTA calculationg® by just using the nonequi- tion if the the relaxed configurations are embedded into a
librium density matrix and Hamiltonian matrix instead of the 440-atom cell, where the actual transport calculations are
equilibrium quantities® We find that for voltages above 1.5 performed.
V that the first bond in the chain wants to be elongated while In a perfect nanotube two channels, of charaeteand
the second bond wants to compress. Thus the first bond cos*, each contribute a quantum of conductar@g, In Fig.
respond to a “weak spot” as discussed by Todoedwal 3% 21 we present our results for zero bias for the SW defect.
We note that the size of the bias induced forces acting beRecentab initio studie$®®’ are well reproduced, with two
tween the two first wire atoms at 2 V is close to the forcewell defined reflections induced by defect states. The two
required to break single atom cont&¢t61.5+0.3 nN) and  dips in the conductance correspond to the closure of either
the result therefore suggests that the contact cannot sustairttee 7* (below the Fermi leveglor the = channel.
voltage of this magnitude, in agreement with the relay For the ideal vacancy the two antibonding states associ-
experiments® A more detailed calculation including the re- ated with brokens bonds lie close to the Fermi level. The
laxation of the atomic coordinates for finite voltage bias iscoupling between these states and thebands, although
needed in order to draw more firm conclusions about the rolesmall, suffices to open a small gap in the bulklikem*
played by the nonequilibrium forces on the mechanical stabands. The vacancy-induced states appear within this gap.
bility of the atomic gold contacts. We will not go further into Otherwise, the three two-coordinated atoms have a large
the analysis of the electronic structure and forces for finitgpenalty in energy and undergo a large reconstruction towards
bias in the gold wire systems at this point, since our aim hera split vacancy configuration with two pentagons? eV
is simply to present the method and show some of its capdewer in energy. Two configurations are possible, depending
bilities. A full report of our calculations will be published on the orientation of the pentagon pair, depicted in Fig. 22.
elsewhere. We have found that there is a further 0.4-eV gain in energy

4. Forces for finite bias
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by reorienting the pentagon-pentagon 60° off the tube axiseflection of the almost purer* and 7 eigenchannels, re-
[Fig. 22b)] resulting in a formation energy ofE;  spectively. This behavior is qualitatively similar to the SW
=6.75 eV® The bonding of the tetracoordinated atom is defect. On the other hand, for the rotated pentagon pair there
not planar but paired with angles ef158°. Some of these is no mirror plane and the reflected wave does not have a
structures were discussed in previous tight-bindingwell defined character.

calculations”® This is at variance with the results of Refs. 29

and 97, possibly due to their use of too small a supercell VIl. CONCLUSION
which does not accommodate the long-range elastic relax- _ o )
ations induced by these defects. We have described a method and its implementation

The conductance of these defects, calculated at zero bidSRANSIESTA) for calculating the electronic structure, elec-
(Fig. 23, does not present any features close to the Fernffonic transport, and forces acting on the atoms at finite volt-
level. This is in contrast to the ideal vacancy, where reflec2g€ bias in atomic scale systems. The method deals with the
tion related to the states mentioned above are present. Twite voltage in a fully self-consistent manner, and treats
dips appear, at possitions similar to those of the SW deffecooth the semi-infinite electrodes and the contact region with
An eigenchannel analy$fsof the transmission coefficients the same atomic detail. . .
gives the symmetry of the states corresponding to these dips, Ve have considered carbon wires connected to aluminum
The metastable configuration is close to having a mirro€léctrodes where we find good agreement with results pub-
plane, containing the tube axis, except for the small pairingished earlier with another methdsicbcAL)® for electrodes

mode mentioned before. The mixing of theand 7* bands
is rather small. The lower and upper dips come from the

6 e, eeesesesanan. "

Electron current direction ’—W
5 L 4
1.5 Volt 47 |

G (26°h)

O G O
0o ...

E (V)
FIG. 20. The forces acting on the wire atoms when the bias is

applied(the radius of the circles correspond to 0.5)nMhe tensile FIG. 21. Transmission coefficient of pentagon-heptagon double
force in the bond between the two first atoms is about 1 nN for 1 Vpair vs energy measured with respect to the Fermi level. The dotted
and 1.5 nN for 2 V. line shows the transmission of a perfect nanotube.
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G (26°h)

E (eV)

FIG. 23. Similar to Fig. 21 but now for the vacancy: ground
(continuous ling and metastablédashed ling configurations.

Finally we have studied the transport through18,10
nanotube with a Stone-Wales defect or with a monovacancy
(a calculation involving 440 atomsWe have found good
agreement with recemb initio studies of these systerfis®’
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