78 research outputs found

    Hierarchical Star-Formation in M33: Fundamental properties of the star-forming regions

    Full text link
    Star-formation within galaxies appears on multiple scales, from spiral structure, to OB associations, to individual star clusters, and often sub-structure within these clusters. This multitude of scales calls for objective methods to find and classify star-forming regions, regardless of spatial size. To this end, we present an analysis of star-forming groups in the local group spiral galaxy M33, based on a new implementation of the Minimum Spanning Tree (MST) method. Unlike previous studies which limited themselves to a single spatial scale, we study star-forming structures from the effective resolution limit (~20pc) to kpc scales. We find evidence for a continuum of star-forming group sizes, from pc to kpc scales. We do not find a characteristic scale for OB associations, unlike that found in previous studies, and we suggest that the appearance of such a scale was caused by spatial resolution and selection effects. The luminosity function of the groups is found to be well represented by a power-law with an index, -2, similar to that found for clusters and GMCs. Additionally, the groups follow a similar mass-radius relation as GMCs. The size distribution of the groups is best described by a log-normal distribution and we show that within a hierarchical distribution, if a scale is selected to find structure, the resulting size distribution will have a log-normal distribution. We find an abrupt drop of the number of groups outside a galactic radius of ~4kpc, suggesting a change in the structure of the star-forming ISM, possibly reflected in the lack of GMCs beyond this radius. (abridged)Comment: 12 pages, 16 figures, accepted MNRA

    Improved water vapour spectroscopy in the 4174-4300 cm⁻¹ region and its impact on SCIAMACHY HDO/H₂O measurements

    Get PDF
    The relative abundance of the heavy water isotopologue HDO provides a deeper insight into the atmospheric hydrological cycle. The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) allows for global retrievals of the ratio HDO/HO in the 2.3 micron wavelength range. However, the spectroscopy of water lines in this region remains a large source of uncertainty for these retrievals. We therefore evaluate and improve the water spectroscopy in the range 4174–4300 cm⁻¹ and test if this reduces systematic uncertainties in the SCIAMACHY retrievals of HDO/H₂O. We use a laboratory spectrum of water vapour to fit line intensity, air broadening and wavelength shift parameters. The improved spectroscopy is tested on a series of ground-based high resolution FTS spectra as well as on SCIAMACHY retrievals of H2O and the ratio HDO/H₂O. We find that the improved spectroscopy leads to lower residuals in the FTS spectra compared to HITRAN 2008 and Jenouvrier et al. (2007) spectroscopy, and the retrievals become more robust against changes in the retrieval window. For both the FTS and SCIAMACHY measurements, the retrieved total H₂O columns decrease by 2–4% and we find a negative shift of the HDO/H₂O ratio, which for SCIAMACHY is partly compensated by changes in the retrieval setup and calibration software. The updated SCIAMACHY HDO/H₂O product shows somewhat steeper latitudinal and temporal gradients and a steeper Rayleigh distillation curve, strengthening previous conclusions that current isotope-enabled general circulation models underestimate the variability in the near-surface HDO/H₂O ratio

    Inverse modelling of CH4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY

    Get PDF
    At the beginning of 2009 new space-borne observations of dry-air column-averaged mole fractions of atmospheric methane (XCH4_{4}) became available from the Thermal And Near infrared Sensor for carbon Observations–Fourier Transform Spectrometer (TANSO-FTS) instrument on board the Greenhouse Gases Observing SATellite (GOSAT). Until April 2012 concurrent methane (CH4_{4}) retrievals were provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument on board the ENVironmental SATellite (ENVISAT). The GOSAT and SCIAMACHY XCH4_{4} retrievals can be compared during the period of overlap. We estimate monthly average CH4_{4} emissions between January 2010 and December 2011, using the TM5-4DVAR inverse modelling system. In addition to satellite data, high-accuracy measurements from the Cooperative Air Sampling Network of the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) are used, providing strong constraints on the remote surface atmosphere. We discuss five inversion scenarios that make use of different GOSAT and SCIAMACHY XCH4_{4} retrieval products, including two sets of GOSAT proxy retrievals processed independently by the Netherlands Institute for Space Research (SRON)/Karlsruhe Institute of Technology (KIT), and the University of Leicester (UL), and the RemoTeC “Full- Physics” (FP) XCH4_{4} retrievals available from SRON/KIT. The GOSAT-based inversions show significant reductions in the root mean square (rms) difference between retrieved and modelled XCH4_{4}, and require much smaller bias corrections compared to the inversion using SCIAMACHY retrievals, reflecting the higher precision and relative accuracy of the GOSAT XCH4_{4}. Despite the large differences between the GOSAT and SCIAMACHY retrievals, 2-year average emission maps show overall good agreement among all satellitebased inversions, with consistent flux adjustment patterns, particularly across equatorial Africa and North America. Over North America, the satellite inversions result in a significant redistribution of CH4_{4} emissions from North-East to South-Central United States. This result is consistent with recent independent studies suggesting a systematic underestimation of CH4_{4} emissions from North American fossil fuel sources in bottom-up inventories, likely related to natural gas production facilities. Furthermore, all four satellite inversions yield lower CH4_{4} fluxes across the Congo basin compared to the NOAA-only scenario, but higher emissions across tropical East Africa. The GOSAT and SCIAMACHY inversions show similar performance when validated against independent shipboard and aircraft observations, and XCH4_{4} retrievals available from the Total Carbon Column Observing Network (TCCON)

    A peculiar object in M51: fuzzy star cluster or a background galaxy?

    Full text link
    Aims: We study a peculiar object with a projected position close to the nucleus of M51. It is unusually large for a star cluster in M51 and we therefore investigate the three most likely options to explain this object: (a) a background galaxy, (b) a cluster in the disk of M51 and (c) a cluster in M51, but in front of the disk. Methods: We use HST/ACS and HST/NICMOS broad-band photometry to study the properties of this object. Assuming the object is a star cluster, we fit the metallicity, age, mass and extinction using simple stellar population models. Assuming the object is a background galaxy, we estimate the extinction from the colour of the background around the object. We study the structural parameters of the object by fitting the spatial profile with analytical models. Results: We find de-reddened colours of the object which are bluer than expected for a typical elliptical galaxy, and the central surface brightness is brighter than the typical surface brightness of a disc galaxy. It is therefore not likely that the object is a background galaxy. Assuming the object is a star cluster in the disc of M51, we estimate an age and mass of 0.7 Gyr and 2.2 x 10^5 \msun, respectively (with the extinction fixed to E(B-V) = 0.2). Considering the large size of the object, we argue that in this scenario we observe the cluster just prior to final dissolution. If we fit for the extinction as a free parameter, a younger age is allowed and the object is not close to final dissolution. Alternatively, the object could be a star cluster in M51, but in front of the disc, with an age of 1.4 Gyr and mass M = 1.7 x 10^5 \msun. Its effective radius is between ~12-25 pc. This makes the object a "fuzzy star cluster", raising the issue of how an object of this age would end up outside the disc.Comment: 7 pages, 5 figures. Journal-ref and DOI added. 2 typos corrected. Added corrections to proof including 1 referenc

    The spatial distribution of star and cluster formation in M51

    Full text link
    Aims. We study the connection between spatially resolved star formation and young star clusters across the disc of M51. Methods. We combine star cluster data based on B, V, and I-band Hubble Space Telescope ACS imaging, together with new WFPC2 U-band photometry to derive ages, masses, and extinctions of 1580 resolved star clusters using SSP models. This data is combined with data on the spatially resolved star formation rates and gas surface densities, as well as Halpha and 20cm radio-continuum (RC) emission, which allows us to study the spatial correlations between star formation and star clusters. Two-point autocorrelation functions are used to study the clustering of star clusters as a function of spatial scale and age. Results. We find that the clustering of star clusters among themselves decreases both with spatial scale and age, consistent with hierarchical star formation. The slope of the autocorrelation functions are consistent with projected fractal dimensions in the range of 1.2-1.6, which is similar to other galaxies, therefore suggesting that the fractal dimension of hierarchical star formation is universal. Both star and cluster formation peak at a galactocentric radius of 2.5 and 5 kpc, which we tentatively attribute to the presence of the 4:1 resonance and the co-rotation radius. The positions of the youngest (<10 Myr) star clusters show the strongest correlation with the spiral arms, Halpha, and the RC emission, and these correlations decrease with age. The azimuthal distribution of clusters in terms of kinematic age away from the spiral arms indicates that the majority of the clusters formed 5-20 Myr before their parental gas cloud reached the centre of the spiral arm.Comment: 14 pages, 21 figures, accepted for publication in A&

    The type IIb SN 2008ax: the nature of the progenitor

    Full text link
    A source coincident with the position of the type IIb supernova (SN) 2008ax is identified in pre-explosion Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observations in three optical filters. We identify and constrain two possible progenitor systems: (i) a single massive star that lost most of its hydrogen envelope through radiatively driven mass loss processes, prior to exploding as a helium-rich Wolf-Rayet star with a residual hydrogen envelope, and (ii) an interacting binary in a low mass cluster producing a stripped progenitor. Late time, high resolution observations along with detailed modelling of the SN will be required to reveal the true nature of this progenitor star.Comment: 5 pages, 2 figures, resolution of figure 1 reduced, figure 2 revised, some revision following referee's comments, accepted for publication in MNRAS letter

    The Star Cluster Population of M51: II. Age distribution and relations among the derived parameters

    Full text link
    We use archival {\it Hubble Space Telescope} observations of broad-band images from the ultraviolet (F255W-filter) through the near infrared (NICMOS F160W-filter) to study the star cluster population of the interacting spiral galaxy M51. We obtain age, mass, extinction, and effective radius estimates for 1152 star clusters in a region of 7.3×8.1\sim 7.3 \times 8.1 kpc centered on the nucleus and extending into the outer spiral arms. In this paper we present the data set and exploit it to determine the age distribution and relationships among the fundamental parameters (i.e. age, mass, effective radius). Using this dataset we find: {\it i}) that the cluster formation rate seems to have had a large increase \sim 50-70 Myr ago, which is coincident with the suggested {\it second passage} of its companion, NGC 5195, {\it ii}) a large number of extremely young (<< 10 Myr) star clusters, which we interpret as a population of unbound clusters of which a large majority will disrupt within the next \sim10 Myr, and {\it iii)} that the distribution of cluster sizescan be well approximated by a power-law with exponent, η=2.2±0.2 -\eta = -2.2 \pm 0.2, which is very similar to that of Galactic globular clusters, indicating that cluster disruption is largely independent of cluster radius. In addition, we have used this dataset to search for correlations among the derived parameters. In particular, we do not find any strong trends between the age and mass, mass and effective radius, nor between the galactocentric distance and effective radius. There is, however, a strong correlation between the age of a cluster and its extinction, with younger clusters being more heavily reddened than older clusters.Comment: 21 pages, 20 figures, accepted A&
    corecore