36 research outputs found

    Scattering theory for Klein-Gordon equations with non-positive energy

    Full text link
    We study the scattering theory for charged Klein-Gordon equations: \{{array}{l} (\p_{t}- \i v(x))^{2}\phi(t,x) \epsilon^{2}(x, D_{x})\phi(t,x)=0,[2mm] \phi(0, x)= f_{0}, [2mm] \i^{-1} \p_{t}\phi(0, x)= f_{1}, {array}. where: \epsilon^{2}(x, D_{x})= \sum_{1\leq j, k\leq n}(\p_{x_{j}} \i b_{j}(x))A^{jk}(x)(\p_{x_{k}} \i b_{k}(x))+ m^{2}(x), describing a Klein-Gordon field minimally coupled to an external electromagnetic field described by the electric potential v(x)v(x) and magnetic potential b(x)\vec{b}(x). The flow of the Klein-Gordon equation preserves the energy: h[f, f]:= \int_{\rr^{n}}\bar{f}_{1}(x) f_{1}(x)+ \bar{f}_{0}(x)\epsilon^{2}(x, D_{x})f_{0}(x) - \bar{f}_{0}(x) v^{2}(x) f_{0}(x) \d x. We consider the situation when the energy is not positive. In this case the flow cannot be written as a unitary group on a Hilbert space, and the Klein-Gordon equation may have complex eigenfrequencies. Using the theory of definitizable operators on Krein spaces and time-dependent methods, we prove the existence and completeness of wave operators, both in the short- and long-range cases. The range of the wave operators are characterized in terms of the spectral theory of the generator, as in the usual Hilbert space case

    Hierarchical Neutrino Mass Matrices, CP violation and Leptogenesis

    Full text link
    In this work we study examples of hierarchical neutrino mass matrices inspired by family symmetries, compatible with experiments on neutrino oscillations, and for which there is a connection among the low energy CP violation phase associated to neutrino oscillations, the phases appearing in the amplitude of neutrinoless double beta decay, and the phases relevant for leptogenesis. In particular, we determine the predictions from a texture based on an underlying SU(3) family symmetry together with a GUT symmetry, and a strong hierarchy for the masses of the heavy right handed Majorana masses. We also give some examples of inverted hierarchies of neutrino masses, which may be motivated in the context of U(1) family symmetries.Comment: 34 pages. Replaced with published version -typos, corrections and references adde

    Gauge and Scheme Dependence of Mixing Matrix Renormalization

    Full text link
    We revisit the issue of mixing matrix renormalization in theories that include Dirac or Majorana fermions. We show how a gauge-variant on-shell renormalized mixing matrix can be related to a manifestly gauge-independent one within a generalized MSˉ{\bar {\rm MS}} scheme of renormalization. This scheme-dependent relation is a consequence of the fact that in any scheme of renormalization, the gauge-dependent part of the mixing-matrix counterterm is ultra-violet safe and has a pure dispersive form. Employing the unitarity properties of the theory, we can successfully utilize the afore-mentioned scheme-dependent relation to preserve basic global or local symmetries of the bare Lagrangian through the entire process of renormalization. As an immediate application of our study, we derive the gauge-independent renormalization-group equations of mixing matrices in a minimal extension of the Standard Model with isosinglet neutrinos.Comment: 31 pages, LaTeX, uses axodraw.st

    Collider aspects of flavour physics at high Q

    Get PDF
    This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.Comment: Report of Working Group 1 of the CERN Workshop ``Flavour in the era of the LHC'', Geneva, Switzerland, November 2005 -- March 200

    The potential utility of 5-HT1A receptor antagonists in the treatment of cognitive dysfunction associated with Alzheimer s disease.

    No full text
    NoThe 5-HT1A receptor has been extensively studied over the last two decades. There is a plethora of information describing its anatomical, physiological and biochemical roles in the brain. In addition, the development of selective pharmacological tools coupled with our understanding of psychiatric pathology has lead to multiple hypotheses for the therapeutic utility of 5- and in particular 5-HT1A receptor antagonists. Over the last decade it has been suggested that 5-HT1A receptor antagonists may have therapeutic utility in such diseases as depression, anxiety, drug and nicotine withdrawal as well as schizophrenia. However, a very compelling rationale has been developed for the therapeutic potential of 5-HT1A receptor antagonists in Alzheimer s disease and potentially other diseases with associated cognitive dysfunction. Receptor blockade by a 5-HT1A receptor antagonist appears to enhance activation and signaling through heterosynaptic neuronal circuits known to be involved in cognitive processes and, as such, represents a novel therapeutic approach to the treatment of cognitive deficits associated with Alzheimer s disease and potentially other disorders with underlying cognitive dysfunction

    Assessment of carotid artery dose in the treatment of nasopharyngeal cancer with IMRT versus conventional radiotherapy

    No full text
    Purpose: To determine the radiation dose to the carotid artery in nasopharyngeal cancer patients treated with intensity-modulated radiotherapy (IMRT) and to compare it to the dose delivered by a conventional three-field (3F) technique. Materials and methods: Sixteen patients with nasopharyngeal cancer who were treated at UCSF with IMRT were selected for this analysis. 3F plans were reconstructed for comparison. The carotid arteries were retrospectively contoured, and the dose received by each of the 32 carotid arteries was determined for both IMRT and 3F plans. A subset of 8 patients with N0/N1 nodal disease was selected for IMRT replanning using additional constraints to reduce the dose to the arteries. Results: Using the standard prescription doses for IMRT and 3F plans, the dose delivered to 95% of the tumor volume was significantly higher in the IMRT plans, reflecting the greater conformality of this technique. The median mean dose to the carotid arteries was 65.7 Gy with IMRT vs. 58.4 Gy with 3F (p < 0.001). After the application of dose constraints to the carotid arteries, it was possible to reduce the mean carotid dose to 54 Gy in the IMRT replans. Conclusions: IMRT achieves a higher tumoricidal dose and superior clinical target volume coverage, but results in an increase in the carotid artery dose as compared to conventional 3F technique. With careful IMRT planning, it is possible to constrain the carotid dose for a subset of patients with low-risk neck disease. Further study is necessary to quantify the long-term clinical impact of this intervention
    corecore