19 research outputs found

    GLRB allelic variation associated with agoraphobic cognitions, increased startle response and fear network activation : a potential neurogenetic pathway to panic disorder

    Get PDF
    The molecular genetics of panic disorder (PD) with and without agoraphobia (AG) are still largely unknown and progress is hampered by small sample sizes. We therefore performed a genome-wide association study with a dimensional, PD/AG - related anxiety phenotype based on the Agoraphobia Cognition Questionnaire (ACQ) in a sample of 1,370 healthy German volunteers of the CRC TRR58 MEGA study wave 1. A genome-wide significant association was found between ACQ and single non-coding nucleotide variants of the GLRB gene (rs78726293, p=3.3x10-8; rs191260602, p=3.9x10-8). We followed up on this finding in a larger dimensional ACQ sample (N=2,547) and in independent samples with a dichotomous AG phenotype based on the Symptoms Checklist (SCL-90; N=3,845) and a case control sample with the categorical phenotype PD/AG (Ncombined =1,012) obtaining highly significant p-values also for GLRB single nucleotide variants rs17035816 (p=3.8x10-4) and rs7688285 (p=7.6x10-5). GLRB gene expression was found to be modulated by rs7688285 in brain tissue as well as cell culture. Analyses of intermediate PD/AG phenotypes demonstrated increased startle reflex and increased fear network as well as general sensory activation by GLRB risk gene variants rs78726293, rs191260602, rs17035816 and rs7688285. Partial Glrb knockout-mice demonstrated an agoraphobic phenotype. In conjunction withthe clinical observation that rare coding GLRB gene mutations are associated with the neurological disorder hyperekplexia characterized by a generalized startle reaction and agoraphobic behavior, our data provide evidence that non-coding, though functional GLRB gene polymorphisms may predispose to PD by increasing startle response and agoraphobic cognitions.PostprintPeer reviewe

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Die Regulation der Corticotropin Releasing Hormon Rezeptor 1 Genexpression und ihre Rolle bei der Panikstörung

    No full text
    Panic Disorder (PD) is characterized by unexpected, recurrent panic attacks, which are not restricted to certain situations, medication or stimuli. Like other anxiety disorders, PD is a multifactorial disorder and develops through the interaction of genetic and environmental risk factors. Despite an estimated heritability of up to 48%, no distinct genetic mechanism could be revealed yet. A dysregulation of the stress response has been shown in patients with PD and several studies could find an association of components of the corticotropin-releasing factor (CRF) system with PD. The corticotropin releasing hormone receptor 1 (CRHR1) is the main receptor of CRF in the brain and thus a crucial regulator of cerebral CRF signaling. Recent genetic studies found an association of certain CRHR1 single nucleotide polymorphisms (SNPs) with PD and other anxiety disorders. Among the associated CRHR1 SNPs, rs17689918 showed further evidence in a multilevel study regulating CRHR1 gene expression in panic-relevant brain regions and affecting brain activation in fMRI experiments, as well as flight behavior in a behavioral avoidance task (Weber et al, 2015). Here, we aimed to investigate the underlying neurogenetic and neurobiological mechanisms, by which the rs17689918 risk allele affects CRHR1 gene expression and receptor function, and its putative function in the pathophysiology of PD. Due to its intronic position and the predicted change of splicing regulatory elements by the risk allele of rs17689918, the expression of alternative spliced CRHR1 isoforms was investigated using quantitative real-time PCR (qPCR) in a human post-mortem brain tissue sample. Of eight known CRHR1 isoforms, expression of three CRHR1 isoforms and the CRHR1-IT1-CRHR1 readthrough transcript variant 5 – all expressing the seven transmembrane domains needed for functional receptors – was analyzed. Subsequently, electrophysiological assays were developed to measure the receptor activity of differentially expressed CRHR1 isoforms via co-expressed Kir2.3 potassium channels in vitro. In a second approach, possible epigenetic regulation of CRHR1 expression by rs17689918 was investigated by analyses of DNA methylation patterns of a CpG Island within the CRHR1 promoter region, firstly in a case-control sample for PD and secondly in a healthy control sample, separated in high and low anxious individuals. To investigate a possible gene × epigene × environment interaction, the impact of early life stress by means of childhood trauma was evaluated via the childhood trauma questionnaire (CTQ). Finally, consequences of differential DNA methylation of the CRHR1 promoter region on gene expression were investigated by luciferase-based reporter gene assays in vitro. The expression of CRHR1β was significantly decreased in amygdalae and midbrains of risk allele carriers. The expression of CRHR1-IT1-CRHR1 readthrough transcript variant 5 was significantly increased in forebrains and midbrains of risk allele carriers. All other analyzed isoforms showed no differences in expression between non-risk and risk allele carriers of rs17689918. The electrophysiological recordings of membrane potential showed an activation of Kir2.3 channels by CRHR1β in contrast to an inconsistent mix of activation and inhibition of Kir2.3 by the main isoform CRHR1α. DNA methylation of the CRHR1 promoter region was significantly reduced in panic disorder patients, as well as in high anxious individuals of an independent healthy control sample, but no direct relation to the rs17689918 risk allele could be discerned. However, the combination of carrying the risk allele, low DNA methylation and high CTQ scores lead to increased sum scores in the Beck Anxiety Inventory (BAI) in healthy individuals. Functional analyses revealed an activation of gene expression by decreased DNA methylation of the promoter region in vitro. Our results revealed that rs17689918 regulates CRHR1 function by increasing the expression of alternative transcript variants with altered function. Our analyses of DNA methylation revealed decreased methylation as a new risk factor for panic disorder and high anxious behavior, which in combination with other risk factors like childhood trauma and the rs17689918 risk allele might further increase cognitive and somatic anxiety symptoms. This supports the role of CRHR1 as a plasticity gene of anxiety behavior, i.e. a gene that is highly regulated by epigenetic or post-transcriptional mechanisms in response to environmental stressors. By its role in CRF signaling, the dysregulation of CRHR1 might extensively affect the stress response and contribute to the pathophysiology of stress-related disorders like PD. The understanding of the underlying mechanisms, especially the genetic and epigenetic regulation, would however enhance CRHR1 as a target of improved future therapeutics for PD and other anxiety disorders.Die Panikstörung manifestiert sich durch unerwartete, wiederkehrende Panikattacken, welche sich nicht auf bestimmte Situationen, Medikationen oder Stimuli zurückführen lassen. Bei der Panikstörung handelt es sich, wie bei allen psychischen Erkrankungen, um eine sogenannte multifaktorielle Erkrankung, d.h. sie entwickelt sich aus einem Zusammenspiel von genetischen Faktoren und Umweltfaktoren. Trotz einer geschätzten Heritabilität von bis zu 48% ist bisher kein eindeutiger genetischer Mechanismus bekannt, der zur Entwicklung einer Panikstörung führt. Mehrere Studien konnten eine Fehlregulation der Stressantwort bei Patienten mit Panikstörung feststellen. Dabei konnten mehrfach Polymorphismen in Genen des Corticotropin-Releasing Faktor (CRF) Systems mit Panikstörung assoziiert werden. Insbesondere der Hauptrezeptor von CRF im Gehirn, der Corticotropin Releasing Hormon Rezeptor 1 (CRHR1), konnte in mehreren Studien mit Panikstörung und anderen Angsterkrankungen assoziiert werden. In einer kürzlich erschienenen Studie wurde gezeigt, dass der CRHR1 Einzelnukleotid-Polymorphismus rs17689918 die Genexpression von CRHR1 in Gehirnregionen reguliert, die auch in Angsterkrankungen eine Schlüsselrolle spielen. Zusätzlich zeigten Risikoallelträger eine veränderte Gehirnaktivierung in fMRT Experimenten und ein verändertes Fluchtverhalten in einem Verhaltenstest (Weber et al, 2015). In der vorliegenden Studie wurden die zugrundeliegenden neurogenetischen und neurobiologischen Mechanismen untersucht, anhand derer das Risikoallel von rs17689918 die CRHR1 Genexpression und Rezeptorfunktion beeinflusst, und welche Rolle diese in der Pathophysiologie der Panikstörung spielen. Aufgrund der Position von rs17689918 im Intron von CRHR1 und der in silico berechneten Änderung der Erkennungssequenz für Spleißregulatoren durch das Risikoallel von rs17689918 wurde die Expression alternativer Spleißformen von CRHR1 mittels quantitativer real-time PCR in humanen post-mortem Gehirnproben analysiert. Insgesamt wurde die Expression von vier CRHR1 Isoformen und die Expression der CRHR1-IT1-CRHR1 readthrough Transkriptvariante 5 analysiert. Für funktionelle Analysen wurden elektrophysiologische Assays entwickelt, um durch die Messung der Aktivität von ko-exprimierten Kir2.3 Kaliumkanälen die Rezeptoraktivität der CRHR1 Isoformen in vitro bestimmen zu können. Zusätzlich wurde eine mögliche epigenetische Regulation der CRHR1 Genexpression durch rs17689918 untersucht. Hierfür wurden DNA Methylierungsmuster eines Abschnittes einer CpG-Insel im Promoterbereich des CRHR1 Gens in einer Fall-Kontroll-Stichprobe für Panikstörung und einer weiteren gesunden Kontrollstichprobe – unterteilt in eine hoch-ängstliche und eine niedrig-ängstliche Gruppe – analysiert. Um mögliche Gen-Epigen-Umweltinteraktionen zu untersuchen, wurde zusätzlich der Einfluss belastender Lebensereignisse in frühen Lebensabschnitten mittels dem Childhood Trauma Questionnaire (CTQ) erfasst. Die Funktionalität von differenziell methylierten Abschnitten der CRHR1 Promoterregion wurde mittels Luziferase-basierten Reportergenassays in vitro untersucht. Die Ergebnisse der Expressionsanalyse zeigen eine signifikant verminderte Expression der Isoform CRHR1β in Amygdala- und Mittelhirnproben von Risikoallelträgern. Gleichzeitig war CRHR1-IT1-CRHR1 Transkriptvariante 5 in Vorderhirn- und Mittelhirnproben von Risikoallelträgern signifikant höher exprimiert. Alle anderen Isoformen zeigten keinen Expressionsunterschied zwischen Risiko- und Nicht-Risikoallelträgern von rs17689918. Elektrophysiologische Messungen des Membranpotentials fanden eine Aktivierung der ko-exprimierten Kir2.3 Kanäle durch Isoform CRHR1β, im Gegensatz zu einer inkonsistenten Regulation aus Aktivierung und Inhibition der Kanäle durch die Hauptvariante CRHR1α. Patienten mit Panikstörung zeigten eine geringere DNA-Methylierung der CRHR1 Promoterregion im Vergleich zu gesunden Kontrollen. Gleichzeitig haben hoch-ängstliche gesunde Probanden eine geringere DNA Methylierung der CRHR1 Promoterregion als weniger ängstlichen Probanden. Allerdings konnte kein Einfluss von rs17689918 auf die DNA-Methylierung gefunden werden. Probanden mit einer Akkumulation von Risikofaktoren wie dem Risikoallel von rs17689918, geringer DNA-Methylierung und hohen CTQ-Werten erreichen außerdem höhere Summenwerte im BAI. Die funktionellen Analysen zeigten eine Aktivierung der Genexpression infolge einer geringen DNA-Methylierung der differenziell methylierten CpG-Stellen. Die Ergebnisse zeigen, dass rs17689918 die Funktion von CRHR1 durch eine Verschiebung der Expression zu alternativen, weniger oder nicht-funktionellen Spleißvarianten steuert. Zusätzlich zeigen die Analysen, dass eine verringerte DNA-Methylierung der CRHR1 Promoterregion ein Risikofaktor für Panikstörung und erhöhtes Angstverhalten ist, welcher in Kombination mit weiteren Risikofaktoren wie Kindheitstraumata oder dem rs17689918 Risikoallel ängstliche Verhaltenszüge begünstigt. Dies unterstützt die Hypothese, dass CRHR1 die Funktion eines sogenannten „Plastizitätsgens“ für ängstliches Verhalten und Angsterkrankungen hat, d.h. ein Gen dessen Expression durch epigenetische und posttranskriptionale Modulation in Reaktion auf Umwelteinflüsse reguliert wird. Durch seine wichtige Funktion im CRF-Signalweg könnte eine Fehlregulation von CRHR1 einen weitreichenden Einfluss auf die humane Stressantwort haben und somit auch zur Pathophysiologie von stress-bedingten Erkrankungen wie Panikstörung beitragen. Das Verständnis der zugrundeliegenden Mechanismen, besonders der genetischen und epigenetischen Regulation, würde dazu beitragen CRHR1 als möglichen Ansatzpunkt zukünftiger Therapien für Panikstörung und anderen Angsterkrankungen zu erschließen

    Knockdown of the ADHD candidate gene Diras2 in murine hippocampal primary cells

    No full text
    Objective: The DIRAS2 gene is associated with ADHD, but its function is largely unknown. Thus, we aimed to explore the genes and molecular pathways affected by DIRAS2. Method: Using short hairpin RNAs, we downregulated Diras2 in murine hippocampal primary cells. Gene expression was analyzed by microarray and affected pathways were identified. We used quantitative real-time polymerase chain reaction (qPCR) to confirm expression changes and analyzed enrichment of differentially expressed genes in an ADHD GWAS (genome-wide association studies) sample. Results: Diras2 knockdown altered expression of 1,612 genes, which were enriched for biological processes involved in neurodevelopment. Expression changes were confirmed for 33 out of 88 selected genes. These 33 genes showed significant enrichment in ADHD patients in a gene-set-based analysis. Conclusion: Our findings show that Diras2 affects numerous genes and thus molecular pathways that are relevant for neurodevelopmental processes. These findings may further support the hypothesis that DIRAS2 is linked to etiological processes underlying ADHD. (J. of Att. Dis. 2021; 25(4) 572-583)

    Plasticity of Functional MAOA Gene Methylation in Acrophobia

    No full text
    Epigenetic mechanisms have been proposed to mediate fear extinction in animal models. Here, MAOA methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells before and after a 2-week exposure therapy in a sample of n = 28 female patients with acrophobia as well as in n = 28 matched healthy female controls. Clinical response was measured using the Acrophobia Questionnaire and the Attitude Towards Heights Questionnaire. The functional relevance of altered MAOA methylation was investigated by luciferase-based reporter gene assays. MAOA methylation was found to be significantly decreased in patients with acrophobia compared with healthy controls. Furthermore, MAOA methylation levels were shown to significantly increase after treatment and correlate with treatment response as reflected by decreasing Acrophobia Questionnaire/Attitude Towards Heights Questionnaire scores. Functional analyses revealed decreased reporter gene activity in presence of methylated compared with unmethylated pCpGfree_MAOA reporter gene vector constructs. The present proof-of-concept psychotherapy-epigenetic study for the first time suggests functional MAOA methylation changes as a potential epigenetic correlate of treatment response in acrophobia and fosters further investigation into the notion of epigenetic mechanisms underlying fear extinction
    corecore