5 research outputs found

    NOTUM from Apc-mutant cells biases clonal competition to initiate cancer

    Get PDF
    Funding Information: Acknowledgements We thank the Core Services and Advanced Technologies at the Cancer Research UK Beatson Institute (C596/A17196 and A31287), and particularly the Biological Services Unit, Histology Service and Molecular Technologies; members of the Sansom and Katajisto laboratories for discussions of the data and manuscript; and BRC Oxford for supplying patient material. O.J.S. and his laboratory members were supported by Cancer Research UK (A28223, A21139, A12481 and A17196). D.J.F. and M.C.H. were supported by the UK Medical Research Council (MR/R017247/1 and MR/J50032X/1, respectively). SpecifiCancer CRUK Grand Challenge (C7932/A29055) is funded by Cancer Research UK and the Mark Foundation for Cancer Research. P.K. and his laboratory members were supported by the Academy of Finland Centre of Excellence MetaStem (266869, 304591 and 320185), the ERC Starting Grant 677809, the Swedish Research Council 2018-03078, the Cancerfonden 190634, the Jane and Aatos Erkko Foundation and the Cancer Foundation Finland. N.P. was supported by the Finnish Cultural Foundation, the Biomedicum Helsinki Foundation, the Orion Research Foundation sr and The Paulo Foundation. P.V.F. was supported by Alzheimer’s Research UK and The Francis Crick Institute. The ARUK UCL Drug Discovery Institute receives its core funding from Alzheimer’s Research UK (520909). The Francis Crick Institute receives its core funding from Cancer Research UK (FC001002), the UK Medical Research Council (FC001002) and the Wellcome Trust (FC001002). Publisher Copyright: © 2021, The Author(s), under exclusive licence to Springer Nature Limited.The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling(1), but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)(2). Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.Peer reviewe

    Történeti talajművelés talajra gyakorolt hatásainak vizsgálata középhegységi cseres-kocsánytalan tölgyes erdő talajaiban

    Get PDF
    Stimulation of cells with epidermal growth factor (EGF) induces internalization and partial degradation of the EGF receptor (EGFR) by the endo-lysosomal pathway. For continuous cell functioning, EGFR plasma membrane levels are maintained by transporting newly synthesized EGFRs to the cell surface. The regulation of this process is largely unknown. In this study, we find that EGF stimulation specifically increases the transport efficiency of newly synthesized EGFRs from the endoplasmic reticulum to the plasma membrane. This coincides with an up-regulation of the inner coat protein complex II (COPII) components SEC23B, SEC24B, and SEC24D, which we show to be specifically required for EGFR transport. Up-regulation of these COPII components requires the transcriptional regulator RNF11, which localizes to early endosomes and appears additionally in the cell nucleus upon continuous EGF stimulation. Collectively, our work identifies a new regulatory mechanism that integrates the degradation and transport of EGFR in order to maintain its physiological levels at the plasma membrane
    corecore