5,520 research outputs found

    Impact hazard protection efficiency by a small kinetic impactor

    Get PDF
    In this paper the ability of a small kinetic impactor spacecraft to mitigate an Earth-threatening asteroid is assessed by means of a novel measure of efficiency. This measure estimates the probability of a space system to deflect a single randomly-generated Earth-impacting object to a safe distance from the Earth. This represents a measure of efficiency that is not biased by the orbital parameters of a test-case object. A vast number of virtual Earth-impacting scenarios are investigated by homogenously distributing in orbital space a grid of 17,518 Earth impacting trajectories. The relative frequency of each trajectory is estimated by means Opik’s theory and Bottke’s near Earth objects model. A design of the entire mitigation mission is performed and the largest deflected asteroid computed for each impacting trajectory. The minimum detectable asteroid can also be estimated by an asteroid survey model. The results show that current technology would likely suffice against discovered airburst and local damage threats, whereas larger space systems would be necessary to reliably tackle impact hazard from larger threats. For example, it is shown that only 1,000 kg kinetic impactor would suffice to mitigate the impact threat of 27.1% of objects posing similar threat than that posed by Apophis

    Horizon effects with surface waves on moving water

    Get PDF
    Surface waves on a stationary flow of water are considered, in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity [Sch\"utzhold R and Unruh W G 2002 Phys. Rev. D 66 044019]. A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/short wavelength case kh>>1 where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.Comment: 30 pages, 15 figures. Minor change

    Tungsten Bronze Barium Neodymium Titanate (Ba 6–3 Nd 8+2 Ti 18 O 54 ): An Intrinsic Nanostructured Material and Its Defect Distribution

    Get PDF
    We investigated the structure of the tungsten bronze barium neodymium titanates Ba6–3nNd8+2nTi18O54, which are exploited as microwave dielectric ceramics. They form a complex nanostructure, which resembles a nanofilm with stacking layers of ∼12 Å thickness. The synthesized samples of Ba6–3nNd8+2nTi18O54 (n = 0, 0.3, 0.4, 0.5) are characterized by pentagonal and tetragonal columns, where the A cations are distributed in three symmetrically inequivalent sites. Synchrotron X-ray diffraction and electron energy loss spectroscopy allowed for quantitative analysis of the site occupancy, which determines the defect distribution. This is corroborated by density functional theory calculations. Pentagonal columns are dominated by Ba, and tetragonal columns are dominated by Nd, although specific Nd sites exhibit significant concentrations of Ba. The data indicated significant elongation of the Ba columns in the pentagonal positions and of the Nd columns in tetragonal positions involving a zigzag arrangement of atoms along the b lattice direction. We found that the preferred Ba substitution occurs at Nd[3]/[4] followed by Nd[2] and Nd[1]/[5] sites, which is significantly different to that proposed in earlier studies. Our results on the Ba6–3nNd8+2nTi18O54 “perovskite” superstructure and its defect distribution are particularly valuable in those applications where the optimization of material properties of oxides is imperative; these include not only microwave ceramics but also thermoelectric materials, where the nanostructure and the distribution of the dopants will reduce the thermal conductivity

    Degree of explanation

    Get PDF
    Partial explanations are everywhere. That is, explanations citing causes that explain some but not all of an effect are ubiquitous across science, and these in turn rely on the notion of degree of explanation. I argue that current accounts are seriously deficient. In particular, they do not incorporate adequately the way in which a cause’s explanatory importance varies with choice of explanandum. Using influential recent contrastive theories, I develop quantitative definitions that remedy this lacuna, and relate it to existing measures of degree of causation. Among other things, this reveals the precise role here of chance, as well as bearing on the relation between causal explanation and causation itself

    Ambiguous figures and the content of experience

    Get PDF
    Representationalism is the position that the phenomenal character of an experience is either identical with, or supervenes on, the content of that experience. Many representationalists hold that the relevant content of experience is nonconceptual. I propose a counterexample to this form of representationalism that arises from the phenomenon of Gestalt switching, which occurs when viewing ambiguous figures. First, I argue that one does not need to appeal to the conceptual content of experience or to judgements to account for Gestalt switching. I then argue that experiences of certain ambiguous figures are problematic because they have different phenomenal characters but that no difference in the nonconceptual content of these experiences can be identified. I consider three solutions to this problem that have been proposed by both philosophers and psychologists and conclude that none can account for all the ambiguous figures that pose the problem. I conclude that the onus is on representationalists to specify the relevant difference in content or to abandon their position

    Determination of the branching ratios Γ(KL3π0)/Γ(KLπ+ππ0)\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi^+ \pi^- \pi^0) and Γ(KL3π0)/Γ(KLπeν)\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi e \nu )

    Get PDF
    Improved branching ratios were measured for the KL3π0K_L \to 3 \pi^0 decay in a neutral beam at the CERN SPS with the NA31 detector: Γ(KL3π0)/Γ(KLπ+ππ0)=1.611±0.037\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi^+ \pi^- \pi^0) = 1.611 \pm 0.037 and Γ(KL3π0)/Γ(KLπeν)=0.545±0.010\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi e \nu ) = 0.545 \pm 0.010. From the first number an upper limit for ΔI=5/2\Delta I =5/2 and ΔI=7/2\Delta I = 7/2 transitions in neutral kaon decay is derived. Using older results for the Ke3/Kμ\mu 3 fraction, the 3π0\pi^0 branching ratio is found to be Γ(KL3π0)/Γtot=(0.211±0.003)\Gamma (K_L \to 3 \pi^0 )/ \Gamma_{tot} = (0.211 \pm 0.003), about a factor three more precise than from previous experiments

    The Basics of Water Waves Theory for Analogue Gravity

    Full text link
    This chapter gives an introduction to the connection between the physics of water waves and analogue gravity. Only a basic knowledge of fluid mechanics is assumed as a prerequisite.Comment: 36 pages. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 201

    Mass Calibration and Cosmological Analysis of the SPT-SZ Galaxy Cluster Sample Using Velocity Dispersion σv\sigma_v and X-ray YXY_\textrm{X} Measurements

    Full text link
    We present a velocity dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σv\sigma_v) and 16 X-ray Yx measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. The calibrations using σv\sigma_v and Yx are consistent at the 0.6σ0.6\sigma level, with the σv\sigma_v calibration preferring ~16% higher masses. We use the full cluster dataset to measure σ8(Ωm/0.27)0.3=0.809±0.036\sigma_8(\Omega_ m/0.27)^{0.3}=0.809\pm0.036. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming the sum of the neutrino masses is mν=0.06\sum m_\nu=0.06 eV, we find the datasets to be consistent at the 1.0σ\sigma level for WMAP9 and 1.5σ\sigma for Planck+WP. Allowing for larger mν\sum m_\nu further reconciles the results. When we combine the cluster and Planck+WP datasets with BAO and SNIa, the preferred cluster masses are 1.9σ1.9\sigma higher than the Yx calibration and 0.8σ0.8\sigma higher than the σv\sigma_v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness of fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe dataset, we measure Ωm=0.299±0.009\Omega_ m=0.299\pm0.009 and σ8=0.829±0.011\sigma_8=0.829\pm0.011. Within a ν\nuCDM model we find mν=0.148±0.081\sum m_\nu = 0.148\pm0.081 eV. We present a consistency test of the cosmic growth rate. Allowing both the growth index γ\gamma and the dark energy equation of state parameter ww to vary, we find γ=0.73±0.28\gamma=0.73\pm0.28 and w=1.007±0.065w=-1.007\pm0.065, demonstrating that the expansion and the growth histories are consistent with a LCDM model (γ=0.55;w=1\gamma=0.55; \,w=-1).Comment: Accepted by ApJ (v2 is accepted version); 17 pages, 6 figure

    Analysis of Sunyaev-Zel'dovich Effect Mass-Observable Relations using South Pole Telescope Observations of an X-ray Selected Sample of Low Mass Galaxy Clusters and Groups

    Full text link
    (Abridged) We use 95, 150, and 220GHz observations from the SPT to examine the SZE signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg^2 of the XMM-BCS. These systems extend to redshift z=1.02, have characteristic masses ~3x lower than clusters detected directly in the SPT data and probe the SZE signal to the lowest X-ray luminosities (>10^42 erg s^-1) yet. We develop an analysis tool that combines the SZE information for the full ensemble of X-ray-selected clusters. Using X-ray luminosity as a mass proxy, we extract selection-bias corrected constraints on the SZE significance- and Y_500-mass relations. The SZE significance- mass relation is in good agreement with an extrapolation of the relation obtained from high mass clusters. However, the fit to the Y_500-mass relation at low masses, while in good agreement with the extrapolation from high mass SPT clusters, is in tension at 2.8 sigma with the constraints from the Planck sample. We examine the tension with the Planck relation, discussing sample differences and biases that could contribute. We also present an analysis of the radio galaxy point source population in this ensemble of X-ray selected systems. We find 18 of our systems have 843 MHz SUMSS sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8σ\sigma significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17+-9) per cent in this sample of low mass systems.Comment: 15 pages, 7 figure
    corecore