5,167 research outputs found

    Are fruit colors adapted to consumer vision and birds equally efficient in detecting colorful signals?

    Get PDF
    Reproduction in plants often requires animal vectors. Fruit and flower colors are traditionally viewed as an adaptation to facilitate detection for pollinators and seed dispersers. This long-standing hypothesis predicts that fruits are easier to detect against their own leaves compared with those of different species. We tested this hypothesis by analyzing the chromatic contrasts between 130 bird-dispersed fruits and their respective backgrounds according to avian vision. From a bird's view, fruits are not more contrasting to their own background than to those of other plant species. Fruit colors are therefore not adapted toward maximized conspicuousness for avian seed dispersers. However, secondary structures associated with fruit displays increase their contrasts. We used fruit colors to assess whether the ultraviolet and violet types of avian visual systems are equally efficient in detecting color signals. In bright light, the chromatic contrasts between fruit and background are stronger for ultraviolet vision. This advantage is due to the lesser overlap in spectral sensitivities of the blue and ultraviolet cones, which disappears in dim light conditions. We suggest that passerines with ultraviolet cones might primarily use epigamic signals that are less conspicuous to their avian predators (presumably with violet vision). Possible examples for such signals are carotenoid-based signals

    Adaptation of flower and fruit colours to multiple, distinct 1 mutualists

    Get PDF
    Communication in plant–animal mutualisms frequently involves multiple perceivers. A fundamental uncertainty is whether and how species adapt to communicate with groups of mutualists having distinct sensory abilities. We quantified the colour conspicuousness of flowers and fruits originating from one European and two South American plant communities, using visual models of pollinators (bee and fly) and seed dispersers (bird, primate and marten). We show that flowers are more conspicuous than fruits to pollinators, and the reverse to seed dispersers. In addition, flowers are more conspicuous to pollinators than to seed dispersers and the reverse for fruits. Thus, despite marked differences in the visual systems of mutualists, flower and fruit colours have evolved to attract multiple, distinct mutualists but not unintended perceivers. We show that this adaptation is facilitated by a limited correlation between flower and fruit colours, and by the fact that colour signals as coded at the photoreceptor level are more similar within than between functional groups (pollinators and seed dispersers). Overall, these results provide the first quantitative demonstration that flower and fruit colours are adaptations allowing plants to communicate simultaneously with distinct groups of mutualists.Peer reviewe

    CrossLink: visualization and exploration of sequence relationships between (micro) RNAs

    Get PDF
    CrossLink is a versatile tool for the exploration of relationships between RNA sequences. After a parametrization phase, CrossLink delegates the determination of sequence relationships to established tools (BLAST, Vmatch and RNAhybrid) and then constructs a network. Each node in this network represents a sequence and each link represents a match or a set of matches. Match attributes are reflected by graphical attributes of the links and corresponding alignments are displayed on a mouse-click. The distributions of match attributes such as E-value, match length and proportion of identical nucleotides are displayed as histograms. Sequence sets can be highlighted and visibility of designated matches can be suppressed by real-time adjustable thresholds for attribute combinations. Powerful network layout operations (such as spring-embedding algorithms) and navigation capabilities complete the exploration features of this tool. CrossLink can be especially useful in a microRNA context since Vmatch and RNAhybrid are suitable tools for determining the antisense and hybridization relationships, which are decisive for the interaction between microRNAs and their targets. CrossLink is available both online and as a standalone version at

    Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics

    Get PDF
    Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds’ Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures

    Hubble Space Telescope Astrometry of the Procyon System

    Full text link
    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84 yr period by the faint DQZ white dwarf Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 +/- 0.012 Msun and 0.592 +/- 0.006 Msun for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is ~2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for white dwarfs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2 Msun, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ~5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (~0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.Comment: Accepted by Astrophysical Journa

    The Cytotoxicity of the Ajoene Analogue BisPMB in WHCO1 Oesophageal Cancer Cells Is Mediated by CHOP/GADD153

    Get PDF
    Garlic is a food and medicinal plant that has been used in folk medicine since ancient times for its beneficial health effects, which include protection against cancer. Crushed garlic cloves contain an array of small sulfur-rich compounds such as ajoene. Ajoene is able to interfere with biological processes and is cytotoxic to cancer cells in the low micromolar range. BisPMB is a synthetic ajoene analogue that has been shown in our laboratory to have superior cytotoxicity to ajoene. In the current study we have performed a DNA microarray analysis of bisPMB-treated WHCO1 oesophageal cancer cells to identify pathways and processes that are affected by bisPMB. The most significantly enriched biological pathways as assessed by gene ontology, KEGG and ingenuity pathway analysis were those involving protein processing in the endoplasmic reticulum (ER) and the unfolded protein response. In support of these pathways, bisPMB was found to inhibit global protein synthesis and lead to increased levels of ubiquitinated proteins. BisPMB also induced alternate splicing of the transcription factor XBP-1; increased the expression of the ER stress sensor GRP78 and induced expression of the ER stress marker CHOP/GADD153. CHOP expression was found to be central to the cytotoxicity of bisPMB as its silencing with siRNA rendered the cells resistant to bisPMB. The MAPK proteins, JNK and ERK1/2 were activated following bisPMB treatment. However JNK activation was not critical in the cytotoxicity of bisPMB, and ERK1/2 activation was found to play a pro-survival role. Overall the ajoene analogue bisPMB appears to induce cytotoxicity in WHCO1 cells by activating the unfolded protein response through CHOP/GADD153.Peer reviewe

    The high Andes, gene flow and a stable hybrid zone shape the genetic structure of a wide-ranging South American parrot

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the gene flow in some organisms is strongly affected by physical barriers and geographical distance, other highly mobile species are able to overcome such constraints. In southern South America, the Andes (here up to 6,900 m) may constitute a formidable barrier to dispersal. In addition, this region was affected by cycles of intercalating arid/moist periods during the Upper/Late Pleistocene and Holocene. These factors may have been crucial in driving the phylogeographic structure of the vertebrate fauna of the region. Here we test these hypotheses in the burrowing parrot <it>Cyanoliseus patagonus </it>(Aves, Psittaciformes) across its wide distributional range in Chile and Argentina.</p> <p>Results</p> <p>Our data show a Chilean origin for this species, with a single migration event across the Andes during the Upper/Late Pleistocene, which gave rise to all extant Argentinean mitochondrial lineages. Analyses suggest a complex population structure for burrowing parrots in Argentina, which includes a hybrid zone that has remained stable for several thousand years. Within this zone, introgression by expanding haplotypes has resulted in the evolution of an intermediate phenotype. Multivariate regressions show that present day climatic variables have a strong influence on the distribution of genetic heterogeneity, accounting for almost half of the variation in the data.</p> <p>Conclusions</p> <p>Here we show how huge barriers like the Andes and the regional environmental conditions imposed constraints on the ability of a parrot species to colonise new habitats, affecting the way in which populations diverged and thus, genetic structure. When contact between divergent populations was re-established, a stable hybrid zone was formed, functioning as a channel for genetic exchange between populations.</p

    Ontogenetic colour changes in an insular tree species: signalling to extinct browsing birds?

    Get PDF
    Summary • Animals often use colours to hide from predators (crypsis) or advertise defences (aposematism), but there is little evidence for colour-based defence in plants. • Here, we test whether ontogenetic changes in leaf colour of lancewood (Pseudopanax crassifolius) may have been part of a defensive strategy against flightless browsing birds called moa, which were once the only large herbivores in New Zealand. We tested this hypothesis by conducting spectrographic measurements on differentsized plants grown in a common garden. We also compared these results with observations on a closely related, derived species that evolved in the absence of moa on the Chatham Islands. • Spectrographic analyses showed that birds would have difficulty distinguishing seedling leaves against a background of leaf litter. Conversely, brightly coloured tissues flanking spines on sapling leaves are highly conspicuous to birds. Once above the reach of the tallest known moa, adults produce leaves that are typical in appearance to adult leaves. The Chatham Island species lacks ontogenetic colour changes entirely. • Overall, the results indicate that P. crassifolius goes through a remarkable series of colour changes during development, from cryptically coloured seedlings to aposematically coloured saplings, which may have formed a defensive strategy to protect against giant browsing birds
    • …
    corecore