9,591 research outputs found

    Thermodynamics of (2+1)-flavor QCD: Confronting Models with Lattice Studies

    Full text link
    The Polyakov-quark-meson (PQM) model, which combines chiral as well as deconfinement aspects of strongly interacting matter is introduced for three light quark flavors. An analysis of the chiral and deconfinement phase transition of the model and its thermodynamics at finite temperatures is given. Three different forms of the effective Polyakov loop potential are considered. The findings of the (2+1)-flavor model investigations are confronted to corresponding recent QCD lattice simulations of the RBC-Bielefeld, HotQCD and Wuppertal-Budapest collaborations. The influence of the heavier quark masses, which are used in the lattice calculations, is taken into account. In the transition region the bulk thermodynamics of the PQM model agrees well with the lattice data.Comment: 13 pages, 7 figures, 3 tables; minor changes, final version to appear in Phys. Rev.

    Fluctuations and the QCD phase diagram

    Full text link
    In this contribution the role of quantum fluctuations for the QCD phase diagram is discussed. This concerns in particular the importance of the matter back-reaction to the gluonic sector. The impact of these fluctuations on the location of the confinement/deconfinement and the chiral transition lines as well as their interrelation are investigated. Consequences of our findings for the size of a possible quarkyonic phase and location of a critical endpoint in the phase diagram are drawn.Comment: 7 pages, 3 figures, to appear in Physics of Atomic Nucle

    Photometric Light Curve for the Kuiper Belt Object 2000 EB173 on 78 Nights

    Get PDF
    Kuiper Belt Objects (KBOs) are generally very faint and cannot in practice be monitored with a well-sampled long-term light curve; so our discovery of the bright KBO 2000 EB173 offers an excellent opportunity for synoptic studies. We present a well-sampled photometric time series (77 R magnitudes and 29 V magnitudes on 78 nights) over a 225-day time span centered on the 2001 opposition. The light curve (corrected to the year 2001 opposition distance) varies from 19.11 to 19.39 mag with a single peak that is smooth, time symmetric, and coincident with opposition. All variations in the light curve are consistent with a linear opposition surge (Ropp = 19.083 + 0.125Xalpha, where alpha is the solar phase angle), while any rotational modulation must have a peak-to-peak amplitude of less than 0.097 mag. This is the first measured opposition surge for any KBO (other than Pluto). The V-R color is 0.63+-0.02, with no apparent variation with phase at the few percent level. With R=19.11 at opposition, 2000 EB173 remains the brightest known KBO and a prime target for future photometric and spectroscopic studies

    Design for Health 4.0: Exploration of a New Area

    Get PDF
    Driven by networked Electronic Health Record systems, Artificial Intelligence, real-time data from wearable devices with an overlay of invisible user interfaces and improved analytics, Health 4.0 is changing the healthcare industry. The focus on collaboration, coherence, and convergence that will make healthcare more predictive and personalised. Furthermore, Health 4.0 realises the value of data more consistently and effectively. It can pinpoint areas of improvement and enable more informed decisions. What it also does is help move the entire healthcare industry from a system that is reactive and focused on fee-for-service to a system that is value-based, which measures outcomes and ensures proactive prevention. In this paper, the authors will first explore the realm of the emerging area of Health 4.0 and identify its opportunities and challenges. This includes understanding the relevant base technologies as well as the design principles for the realization of smart healthcare product, systems and product-service-systems of the future. Following on from there, the authors focus on the role of design in the specific context of healthcare

    The Computational Complexity of the Game of Set and its Theoretical Applications

    Full text link
    The game of SET is a popular card game in which the objective is to form Sets using cards from a special deck. In this paper we study single- and multi-round variations of this game from the computational complexity point of view and establish interesting connections with other classical computational problems. Specifically, we first show that a natural generalization of the problem of finding a single Set, parameterized by the size of the sought Set is W-hard; our reduction applies also to a natural parameterization of Perfect Multi-Dimensional Matching, a result which may be of independent interest. Second, we observe that a version of the game where one seeks to find the largest possible number of disjoint Sets from a given set of cards is a special case of 3-Set Packing; we establish that this restriction remains NP-complete. Similarly, the version where one seeks to find the smallest number of disjoint Sets that overlap all possible Sets is shown to be NP-complete, through a close connection to the Independent Edge Dominating Set problem. Finally, we study a 2-player version of the game, for which we show a close connection to Arc Kayles, as well as fixed-parameter tractability when parameterized by the number of rounds played

    A lattice evaluation of four-quark operators in the nucleon

    Get PDF
    Nucleon matrix elements of various four-quark operators are evaluated in quenched lattice QCD using Wilson fermions. Some of these operators give rise to twist-four contributions to nucleon structure functions. Furthermore, they bear valuable information about the diquark structure of the nucleon. Mixing with lower-dimensional operators is avoided by considering appropriate representations of the flavour group. We find that for a certain flavour combination of baryon structure functions, twist-four contributions are very small. This suggests that twist-four effects for the nucleon might be much smaller than m_p^2/Q^2.Comment: 17 pages, 3 figure

    On the Applicability of Weak-Coupling Results in High Density QCD

    Get PDF
    Quark matter at asymptotically high baryon chemical potential is in a color superconducting state characterized by a gap Delta. We demonstrate that although present weak-coupling calculations of Delta are formally correct for mu -> Infinity, the contributions which have to this point been neglected are large enough that present results can only be trusted for mu >> mu_c ~ 10^8 MeV. We make this argument by using the gauge dependence of the present calculation as a diagnostic tool. It is known that the present calculation yields a gauge invariant result for mu -> Infinity; we show, however, that the gauge dependence of this result only begins to decrease for mu > mu_c, and conclude that the result can certainly not be trusted for mu < mu_c. In an appendix, we set up the calculation of the influence of the Meissner effect on the magnitude of the gap. This contribution to Delta is, however, much smaller than the neglected contributions whose absence we detect via the resulting gauge dependence.Comment: 21 pages, 3 figures, uses LaTeX2e and ReVTeX, updated figures, made minor text change

    On the leading logarithmic evolution of the off-forward distributions

    Get PDF
    We have found the analytical solution of the LO-evolution equation for off-forward distributions which arise in the processes of deeply virtual Compton scattering or exclusive production of mesons. We present the predictions for their evolution with an input distribution taken from recent bag model calculations.Comment: 9 pages, LaTeX, 6 figures; minor corrections: terminology settled, typos in Eq. (3) fixe
    corecore