590 research outputs found

    Long-term trends in domestic US passenger travel: the past 110 years and the next 90

    Get PDF
    Based upon a long-term historical data set of US passenger travel, a model is estimated to project aggregate transportation trends through 2100. One of the two model components projects total mobility (passenger-km traveled) per capita based on per person GDP and the expected utility of travel mode choices (logsum). The second model component has the functional form of a logit model, which assigns the projected travel demand to competing transportation modes. An iterative procedure ensures the average amount of travel time per person to remain at a pre-specified level through modifying the estimated value of time. The outputs from this model can be used as a first-order estimate of a future benchmark against which the effectiveness of various transportation policy measures or the impact of autonomous behavioral change can be assessed

    Costs of mitigating CO2 emissions from passenger aircraft

    Get PDF
    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50–100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth

    The Global Potential for CO2 Emissions Reduction from Jet Engine Passenger Aircraft

    Get PDF
    We analyze the costs of CO2 emissions mitigation measures available to aviation using a global aviation systems model. In that context, we discuss the relationship between mitigation potential and scenario characteristics, and how these interact with policy measures that increase the effective price of fuel, for example, ICAO’s CORSIA emissions offset scheme. We find that global fuel lifecycle CO2 emissions per revenue passenger km could be reduced by 1.9% to 3.0% per year on average by the use of a combination of cost-effective measures, for oil prices which reach 75to75 to 185 per barrel by 2050. Smaller additional emissions reductions, of the order of 0.1% per year, are possible if carbon prices of 50to50 to 150/tCO2 are assumed by 2050. These outcomes strongly depend on assumptions about biofuels, which account for about half of the reduction potential by 2050. Absolute reductions in emissions are limited by the relative lack of mitigation options for long-haul flights, coupled with strong demand growth

    Modeling Airline Cost Pass-Through within Regional Aviation Markets

    Get PDF
    Studies assessing the impact of market-based environmental policies in aviation rely on various scenarios of airline cost pass-through, because there is little empirical evidence with respect to the impacts of airline costs on airfares. Instead, the costs effect has been indirectly measured by proxy variables such as distance, fuel price, and aircraft sizes. This paper provides empirical evidence of airline cost pass-through by developing an airfare model that explicitly captures airline operating costs. Using a feasible generalized two-stage least squares (FG2SLS) approach, we obtained coefficients of airline fuel costs per passenger, non-fuel costs per passenger, and non-fuel costs per flight modeling for seven world regions (20 region-pair markets). A comparison of the estimated cost pass-through elasticities conducted across regional markets suggests that airlines may respond to the cost increases differently, depending on the cost types and the markets they operate in. Based on the estimated coefficients, we systematically evaluate the potential impacts of introducing a carbon tax policy within two major regional markets with distinct cost pass-through elasticities

    Technologies for the global energy transition

    Get PDF
    The availability of reliable, affordable and mature technologies is at the basis of an effective decarbonization strategy, that should be in turn supported by timely and accurate policies. Due to the large differences across sectors and countries, there is no silver bullet to support decarbonization, but a combination of multiple technologies will be required to reach the challenging goal of decarbonizing the energy sector. This chapter presents a focus on the current technological solutions that are available in four main sectors: power generation, industry, transport and buildings. The aim of this work is to highlight the main strengths and weaknesses of the current technologies, to help the reader in understanding which are the main opportunities and challenges related to the development and deployment of each of them, as well as their potential contribution to the decarbonization targets. The chapter also provides strategies and policy recommendations from a technology point of view on how to decarbonize the global energy systems by mid-century and of the necessity to take a systems approach

    Diquark correlations in baryon spectroscopy and holographic QCD

    Full text link
    We introduce an improved mass formula for the nucleon and delta resonances and show how it emerges from AdS/QCD in a straightforward extension of the 'metric soft wall' gravity dual. The resulting spectrum depends on just one adjustable parameter, characterizing confinement-induced IR deformations of the anti-de Sitter (AdS) metric, and on the fraction of 'good' (i.e. maximally attractive) diquarks in the baryon's quark model wave function. Despite its simplicity, the predicted spectrum describes the masses of all 48 observed light-quark baryon states and their linear trajectory structure with unprecedented accuracy.Comment: 4 page

    Study of gas-liquid mixing in stirred vessel using electrical resistance tomography

    Get PDF
    This study presents a full operation and optimisation of a mixing unit; an innovative approach is developed to address the behaviour of gas-liquid mixing by using Electrical Resistance Tomography (ERT). The validity of the method is investigated by developing the tomographic images using different numbers of baffles in a mixing unit. This technique provided clear visual evidence of better mixing that took place inside the gasliquid system and the effect of a different number of baffles on mixing characteristics. For optimum gas flow rate (m3/s) and power input (kW), the oxygen absorption rate in water was measured. Dynamic gassingout method was applied for five different gas flow rates and four different power inputs to find out mass transfer coefficient (KLa). The rest of the experiments with one up to four baffles were carried out at these optimum values of power input (2.0 kW) and gas flow rate (8.5Ă—10-4 m3/s). The experimental results and tomography visualisations showed that the gasliquid mixing with standard baffling provided near the optimal process performance and good mechanical stability, as higher mass transfer rates were obtained using a greater number of baffles. The addition of single baffle had a striking effect on mixing efficiency and additions of further baffles significantly decrease mixing time. The energy required for complete mixing was remarkably reduced in the case of four baffles as compared to without any baffle. The process economics study showed that the increased cost of baffles installation accounts for less cost of energy input for agitation. The process economics have also revealed that the optimum numbers of baffles are four in the present mixing unit and the use of an optimum number of baffles reduced the energy input cost by 54%

    Innovation in Creative Industries: From the Quadruple Helix Model to the Systems Theory

    Get PDF
    Knowledge and creativity have always played a key role in the economy. Since the 2000s, the relevance of the creative industries, a high growth sector, has been pointed out as long as its strong and positive effects on jobs and economic growth. In the current context of rapid globalization and technological development, the innovation system is getting even more complex because it implies a shift in research focus from the supply to the demand side environment (consumption-driven economy). The authors focus on theoretical approaches coming from management and media studies able to explain the current paradigm shift in innovation and knowledge production and use: the Triple Helix model (and its developments) and Systems Theory. As an interesting case study, the Creative Enterprise Australia (CEA) is analyzed according the theoretical approaches shown. The paper tries to shed new light on the evolving role of knowledge pointing out the overlapping relationships between all the actors involved and the interpenetration of systems, and the prominent appointment of the media as an interpretative framework of the convergence of the depicted theories

    Full-Length L1CAM and Not Its Δ2Δ27 Splice Variant Promotes Metastasis through Induction of Gelatinase Expression

    Get PDF
    Tumour-specific splicing is known to contribute to cancer progression. In the case of the L1 cell adhesion molecule (L1CAM), which is expressed in many human tumours and often linked to bad prognosis, alternative splicing results in a full-length form (FL-L1CAM) and a splice variant lacking exons 2 and 27 (SV-L1CAM). It has not been elucidated so far whether SV-L1CAM, classically considered as tumour-associated, or whether FL-L1CAM is the metastasis-promoting isoform. Here, we show that both variants were expressed in human ovarian carcinoma and that exposure of tumour cells to pro-metastatic factors led to an exclusive increase of FL-L1CAM expression. Selective overexpression of one isoform in different tumour cells revealed that only FL-L1CAM promoted experimental lung and/or liver metastasis in mice. In addition, metastasis formation upon up-regulation of FL-L1CAM correlated with increased invasive potential and elevated Matrix metalloproteinase (MMP)-2 and -9 expression and activity in vitro as well as enhanced gelatinolytic activity in vivo. In conclusion, we identified FL-L1CAM as the metastasis-promoting isoform, thereby exemplifying that high expression of a so-called tumour-associated variant, here SV-L1CAM, is not per se equivalent to a decisive role of this isoform in tumour progression

    Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana

    Get PDF
    Amidase 1 (AMI1) from Arabidopsis thaliana converts indole-3-acetamide (IAM), into indole-3-acetic acid (IAA). AMI1 is part of a small isogene family comprising seven members in A. thaliana encoding proteins which share a conserved glycine- and serine-rich amidase-signature. One member of this family has been characterized as an N-acylethanolamine-cleaving fatty acid amidohydrolase (FAAH) and two other members are part of the preprotein translocon of the outer envelope of chloroplasts (Toc complex) or mitochondria (Tom complex) and presumably lack enzymatic activity. Among the hitherto characterized proteins of this family, AMI1 is the only member with indole-3-acetamide hydrolase activity, and IAM is the preferred substrate while N-acylethanolamines and oleamide are not hydrolyzed significantly, thus suggesting a role of AMI1 in auxin biosynthesis. Whereas the enzymatic function of AMI1 has been determined in vitro, the subcellular localization of the enzyme remained unclear. By using different GFP-fusion constructs and an A. thaliana transient expression system, we show a cytoplasmic localization of AMI1. In addition, RT-PCR and anti-amidase antisera were used to examine tissue specific expression of AMI1 at the transcriptional and translational level, respectively. AMI1-expression is strongest in places of highest IAA content in the plant. Thus, it is concluded that AMI1 may be involved in de novo IAA synthesis in A. thaliana
    • …
    corecore