38 research outputs found

    Intensive adoption as a management strategy for unowned, urban cats: A case study of 25 years of trap–assess–resolve (TAR) in Auckland, New Zealand

    Get PDF
    Globally, unowned urban cats are a major concern because they may suffer from poor welfare and cause problems, including public health risks, nuisances, and urban wildlife predation. While management options are often presented as a choice between culling or trap–neuter–return (TNR), for 25 years, the Lonely Miaow (Inc.) charity in Auckland, New Zealand (hereafter LM), has used a third strategy—intensive adoption or trap–assess–resolve (TAR). As of 2019, of 14,611 unowned cats trapped, 64.2% were adopted, 22.2% were euthanized if unsocialised or in grave ill-health, 5.7% were neutered and returned to the site, and 7.9% had other outcomes, such as being transferred to other shelters. Adoption rates increased over this time, exceeding 80.0% in 2018 and 2019. The cost of processing each cat from capture to adoption rose from NZD 58 in 1999 to NZD 234 by 2017. Approximately 80% of colonies (sites where cats were trapped) were around residential areas. Approximately 22% of cats required veterinary treatment after capture; common ailments included respiratory infections, ringworm, dental problems, and trauma. Consistently, 52% of cats were young kittens (5 years old. TAR avoids euthanasia where possible. Its effectiveness would be enhanced by fewer abandonments of owned cats and kittens, fitting within integrated strategies for the control of unowned cats involving community education. Cat adoptions improve the welfare of cats and, with appropriate husbandry, should alleviate concerns about nuisances, public health, and attacks on wildlife or the cats themselves, essentially benefitting the community and the cats. This case study is relevant to other cities around the world that are seeking to manage unowned cats

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Invertebrate prey of the bark-foraging insectivore Phascogale tapoatafa: Distribution of biomass amongst alternative foraging substrates within south-western Australian woodlands

    No full text
    The bark of trees is an important foraging substrate for a range of vertebrate insectivores. This study aimed to investigate the distribution of food resources available to the bark-foraging insectivore Phascogale tapoatafa, and to compare prey biomass on bark versus the litter layer. We conducted nocturnal sampling for arthropods on tree trunks and litter in a forest in south-western Australia. The bark fauna biomass was dominated by spiders, with cockroaches, beetles and ants also well represented. In contrast, the litter was dominated by orthopterans. Invertebrate biomass was much greater in the litter layer than on tree trunks. Prey items in bark were more plentiful in Melaleuca swamps than in the surrounding dry sclerophyll woodland. Within swamps, trees with the highest invertebrate densities had thin trunks or loose bark, whilst in woodland it was trees with thick bark. Water availability may increase the prey resource used by bark-foraging insectivores

    Ecosystem function and species loss - a microcosm study

    No full text
    There are too many kinds of organisms to be able to study and manage each, yet the loss of a single species can sometimes unravel an ecosystem. Such 'fusewire species' - critical in the same sense that an electrical fuse can cut out a whole circuit - would be a rewarding focus for research and management effort. However, this approach can only be effective if these 'fusewires' represent but a small proportion of the number of species in the system. Aim: To demonstrate methods for measuring what proportion of the species in a system are critical to ecosystem function. Methods: The prevalence of fusewire species was measured in manipulative experiments on an aquatic microcosm. Results: No single genus deletion caused changes in key characteristics of the system. Main conclusions: Comparison of these results with other published studies shows that the proportion of critical fusewire species varies amongst different ecosystems. The oxidation pond microcosms were shown to contain no single species indispensable to system function. They appear to be ill-suited to a management strategy which focuses on priority eukaryote species. However, a single study provides no evidence that this result is general or even typical of other kinds of ecosystems; it is presented here as an empirical model. Other methods of investigation are available; they are less experimentally rigorous but more practical. These could provide important guidance in planning an approach to management in a particular ecosystem

    Diet and foraging behaviour of brush-tailed phascogales (Phascogale tapoatafa) in the jarrah forest of south-western Australia

    No full text
    The diet and foraging behaviour of an arboreal marsupial, the brush-tailed phascogale (Phascogale tapoatafa tapoatafa), was examined in the jarrah forest of south-western Australia. Radio-tracking was used to confirm the species’ nocturnal foraging habit and to make direct observations of foraging behaviour. Eleven stomachs, and a collection of 45 scats obtained during summer and autumn, were microscopically examined for content. The availability of major prey items (invertebrates found on or under the bark of tree trunks) was quantified. Phascogales proved to be foraging generalists, and their diet predominantly consisted of invertebrates. Some invertebrate taxa appeared to be preferred but few taxa were avoided. Active pursuit of vertebrates was negligible. However, the species appears opportunistic, and scavenging of vertebrates may contribute to the diet. Nectar was also taken, appearing to be a particularly prized but rare and patchy food source. It is suggested that the current and former distributions of this species have been constrained by both the seasonal reliability of rainfall and the diversity of food resources

    Diet of the critically endangered woylie (Bettongia penicillata ogilbyi) in south-western Australia

    No full text
    To assist the management of the critically endangered woylie (Bettongia penicillata ogilbyi), a quantitative study of its diet was conducted across five of the larger subpopulations in south-Western Australia. There was a close match between dietary composition established from foregut contents and faecal pellets. Woylies were predominantly mycophagous in all subpopulations, but consumed a broad diet including invertebrates, seeds and other plant material. Individuals in a high-density, fenced subpopulation ate significantly less fungi than free-ranging animals from lower-density subpopulations. Dietary composition did not vary significantly amongst subpopulations in the Upper Warren region, where a range of population densities was observed. Altogether, 79 fungal spore classes were identified, including at least 15 genera from 14 families. Sampling across one year showed that fungi made up a larger fraction of the diet in autumn or winter, and greater diversities of fungi were consumed at these times than at other times of year. This information is essential to provide valuable ecological context for effective population management of woylies, as well as identification and conservation of important habitats

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade
    corecore