380 research outputs found

    Increased physical protection of soil carbon in the mineral soil of a poplar plantation after five years of free atmospheric CO<sub>2</sub> enrichment (FACE)

    No full text
    International audienceFree air CO2 enrichment (FACE) experiments in aggrading forests and plantations have demonstrated significant increases in net primary production (NPP) and C storage in forest vegetation. The extra C uptake may also be stored in forest floor litter and in forest soil. After five years of FACE treatment at the EuroFACE short rotation poplar plantation, the increase of total soil C% was larger under elevated than under ambient CO2. However, the fate of this additional C allocated belowground remains unclear. The stability of soil organic matter is controlled by the chemical structure of the organic matter and the existence of protection offered by the soil matrix and minerals. Fresh litter entering the soil enhances microbial activity which induces the binding of organic matter and soil particles into macro-aggregates. As the enclosed organic matter is decomposed, microbial and decomposition products become associated with mineral particles. This association results in the formation of micro-aggregates (within macro-aggregates) in which organic matter is stabilized and protected. FACE and N-fertilization treatment did not affect the micro- and macro-aggregate weight, C or N fractions obtained by wet sieving. However, Populus euramericana increased the micro- and small macro-aggregates weight and C fractions. The obtained macro-aggregates were broken up in order to isolate recently formed micro-aggregates within macro-aggregates (iM-micro-aggregates). FACE increased the iM-micro-aggregate weight and C fractions. This study reveals that: 1) Species has an effect on the formation of macro-aggregates. The choice of species in a plantation or the effect of global change on species diversity, may therefore affect the stabilization and protection of soil C in aggregates. And 2) Increased atmospheric CO2 concentration increases the stabilization and protection of soil C in micro-aggregates formed within macro-aggregates. This mechanism increases the C sink of forest soils under increasing atmospheric CO2 concentration

    Evaluation of coloured nets in peach protected cultivation

    Get PDF
    The aim of this paper is to investigate the influence of the radiometric properties of coloured nets on peach tree photomorphogenesis. The modification of the spectral distribution of the transmitted radiation and thus the effects on the tree vegetative and productive activity were studied. A field experimental test using coloured nets for the protection of peach trees was carried out during 2008 at the experimental farm of the University of Bari, latitude 41° 05' N. A blue net and a red net, characterised by a nominal shading factor of 40%, and a neutral net with a nominal 12% shading factor were tested. Peach trees in open field conditions were used as control. The effects of the nets on the trees growth were correlated with the radiometric properties of the nets, which were evaluated by means of laboratory tests. The red and blue nets influenced mainly the B/FR ratio: the former net decreased and the latter increased the B/FR ratio. The nets influenced the quantity as the quality of the yield. The red net increased the shoot growth of the trees more than the blue one. The nets influenced positively the fruit weight and skin colour in comparison to the open-field

    Effects of free atmospheric CO<sub>2</sub> enrichment (FACE), N fertilization and poplar genotype on the physical protection of carbon in the mineral soil of a polar plantation after five years

    Get PDF
    International audienceFree air CO2 enrichment (FACE) experiments in aggrading forests and plantations have demonstrated significant increases in net primary production (NPP) and C storage in forest vegetation. The extra C uptake may also be stored in forest floor litter and in forest soil. After five years of FACE treatment at the EuroFACE short rotation poplar plantation, the increase of total soil C% was larger under elevated than under ambient CO2. However, the fate of this additional C allocated belowground remains unclear. The stability of soil organic matter is controlled by the chemical structure of the organic matter and the formation of micro-aggregates (within macro-aggregates) in which organic matter is stabilized and protected. FACE and N-fertilization treatment did not affect the micro- and macro-aggregate weight, C or N fractions obtained by wet sieving. However, Populus euramericana increased the small macro-aggregate and free micro-aggregate weight and C fractions. The obtained macro-aggregates were broken up in order to isolate recently formed micro-aggregates within macro-aggregates (iM-micro-aggregates). FACE increased the iM-micro-aggregate weight and C fractions, although not significantly. This study reveals that FACE did not affect the formation of aggregates. We did, however, observe a trend of increased stabilization and protection of soil C in micro-aggregates formed within macro-aggregates under FACE. Moreover, the largest effect on aggregate formation was due to differences in species, i.e. poplar genotype. P. euramericana increased the formation of free micro-aggregates which means that more newly incorporated soil C was stabilized and protected. The choice of species in a plantation, or the effect of global change on species diversity, may therefore affect the stabilization and protection of C in soils

    Mechanical Strategies to Increase Nutritional and Sensory Quality of Virgin Olive Oil by Modulating the Endogenous Enzyme Activities

    Get PDF
    This monograph is a critical review of the biological activities that occur during virgin olive oil (VOO) extraction process. Strategic choices of plant engineering systems and of processing technologies should be made to condition the enzymatic activities, in order to modulate the nutritional and the sensory quality of the product toward the consumer expectations. “Modulation” of the product quality properties has the main aim to predetermine the quantity and the quality of 2 classes of substances: polyphenols and volatile compounds responsible of VOO nutritional and sensory characteristics. In the 1st section, a systematic analysis of the literature has been carried out to investigate the main olive enzymatic activities involved in the complex biotransformation that occurs during the mechanical extraction process. In the 2nd section, a critical and interpretative discussion of the influence of each step of the extraction process on the polyphenols and the volatile compounds has been performed. The effect of the different mechanical devices that are part of the extraction process is analyzed and recommendations, strategies, and possible avenues for future researches are suggested. Practical Application In the field of virgin olive oil industry, time and energy should be spent on developing innovative processing plants and equipment able to better modulate the physical parameters that influence endogenous olive enzyme activities, such as temperature, time, amounts of processing water and oxygen. This review paper can be a useful resource to design and develop innovative equipment by offering an exhaustive analysis of mechanical effects of industrial devices and biological effects of endogenous enzymes on the sensory and nutritional properties of virgin olive oil

    Near-real time forest change detection using PlanetScope imagery

    Get PDF
    © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. To combat global deforestation, monitoring forest disturbances at sub-annual scales is a key challenge. For this purpose, the new Planetscope nano-satellite constellation is a game changer, with a revisit time of 1 day and a pixel size of 3-m. We present a near-real time forest disturbance alert system based on PlanetScope imagery: the Thresholding Rewards and Penances algorithm (TRP). It produces a new forest change map as soon as a new PlanetScope image is acquired. To calibrate and validate TRP, a reference set was constructed as a complete census of five randomly selected study areas in Tuscany, Italy. We processed 572 PlanetScope images acquired between 1 May 2018 and 5 July 2019. TRP was used to construct forest change maps during the study period for which the final user’s accuracy was 86% and the final producer’s accuracy was 92%. In addition, we estimated the forest change area using an unbiased stratified estimator that can be used with a small sample of reference data. The 95% confidence interval for the sample-based estimate of 56.89 ha included the census-based area estimate of 56.19 ha.s

    molecular and chromosomal characterization of repeated and single copy dna sequences in the genome of dasypyrum villosum

    Get PDF
    Restriction fragment length polymorphism of ribosomal DNA repeated unit and single-copy DNA fragments and chromosomal distribution of a highly repeated sequence, have been studied to assess molecular markers and the extent of their heterogeneity in Dasypyrum villosum. Substantial variation has been found for the length of the intergenic spacer of ribosomal genes clustered in different alleles at Nor- VI locus of heterozygous individuals, but not within the cluster of rDNA of homozygous individuals. After Southern blots and hybridization to an intergenic spacer probe, each cluster of rDNA was detected as a single band with at least four variants differing for the number of 130 bp subrepeats in the intergenic spacer. One recombinant plasmid contained a 2270 bp DNA insert from the D. villosum genome that upon Sph I restriction endonuclease digestion was cleaved in three 380 bp repeat elements and one 1090 bp fragment. When Southern blots of Sph 1 digested D. villosum DNAs of different genotypes were hybridized to the 32P-labelled 380 bp repeat, a distinct ladder consisting of multiples of a basic repeat unit of about 380 bp in length was revealed on autoradiograms. The in situ hybridization of the 3H-labelled 380 bp repeat element showed that one chromosome pair (7V) was not labelled. In the other pairs, silver grains remained clustered at or near the telomeres. Dot-blot hybridization analysis of DNAs from a range of diploid, tetraploid, and hexaploid Triticeae species indicated that the 380 bp repeated element was a specific feature of the D. villosum genome. Other cloned DNA sequences of D. villosum showed a large restriction length polymorphism and one was located on V chromosomes

    GIS integration of DInSAR measurements, geological investigation and historical surveys for the structural monitoring of buildings and infrastructures. An application to the Valco San Paolo urban area of Rome

    Get PDF
    Structural health monitoring is a crucial issue in areas with different hazard sources, such as Italy. Among non-invasive monitoring techniques, remote sensing provides useful information in supporting the management process and safety evaluations, reducing the impact of disturbances on the functionality of construction systems. The ground displacement time-series based on the analysis of Differential Interferometric Synthetic Aperture Radar (DInSAR) measurements, as well as the information about the geology of the area and the geometry of the construction under monitoring, provides useful data for the built environment's structural assessment. This paper focuses on the structural monitoring and damage assessment of constructions based on the GIS integration of DInSAR measurements, geological investigation, historical surveys and 3D modeling. The methodology is applied to the residential area of Valco San Paolo in the city of Rome (Italy). Once the geological interpretation has confirmed the results of the DInSAR measurements, a quick damage assessment that considers all the possible conditions of the pre-existing damage at the time zero of the monitoring is shown for a damaged manufact in the area. The presented results highlight how the strategy to correlate the DInSAR-monitored ground settlements with the damage scales allows potentially to monitor continuous construction systems

    Bio-energy retains its mitigation potential under elevated CO2

    Get PDF
    Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink
    • …
    corecore