research

Increased physical protection of soil carbon in the mineral soil of a poplar plantation after five years of free atmospheric CO<sub>2</sub> enrichment (FACE)

Abstract

International audienceFree air CO2 enrichment (FACE) experiments in aggrading forests and plantations have demonstrated significant increases in net primary production (NPP) and C storage in forest vegetation. The extra C uptake may also be stored in forest floor litter and in forest soil. After five years of FACE treatment at the EuroFACE short rotation poplar plantation, the increase of total soil C% was larger under elevated than under ambient CO2. However, the fate of this additional C allocated belowground remains unclear. The stability of soil organic matter is controlled by the chemical structure of the organic matter and the existence of protection offered by the soil matrix and minerals. Fresh litter entering the soil enhances microbial activity which induces the binding of organic matter and soil particles into macro-aggregates. As the enclosed organic matter is decomposed, microbial and decomposition products become associated with mineral particles. This association results in the formation of micro-aggregates (within macro-aggregates) in which organic matter is stabilized and protected. FACE and N-fertilization treatment did not affect the micro- and macro-aggregate weight, C or N fractions obtained by wet sieving. However, Populus euramericana increased the micro- and small macro-aggregates weight and C fractions. The obtained macro-aggregates were broken up in order to isolate recently formed micro-aggregates within macro-aggregates (iM-micro-aggregates). FACE increased the iM-micro-aggregate weight and C fractions. This study reveals that: 1) Species has an effect on the formation of macro-aggregates. The choice of species in a plantation or the effect of global change on species diversity, may therefore affect the stabilization and protection of soil C in aggregates. And 2) Increased atmospheric CO2 concentration increases the stabilization and protection of soil C in micro-aggregates formed within macro-aggregates. This mechanism increases the C sink of forest soils under increasing atmospheric CO2 concentration

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016