18 research outputs found

    Development and Diagnostics of Novel Non-Thermal PlasmaTreatment Systems

    Get PDF
    Non-thermal plasma (NTP) has been a point of interest in many areas over the last few decades. Much research has been,and continues to beundertaken,to understand the fundamentals of plasma discharges. This is such a broad topic due to the very nature and variable dependencies that set the conditions for plasma discharge to occur. This can come in the form of electrode geometry and spacing, dielectric barrier thickness, humidity of environment, material selection for electrodes and dielectric barriers, the power supply used, and the operating gas(es) used. A lot of these influencing factors can be set and kept constant, but still result invariation from system to system. However, the most important aspect comes from the power supply used and the gas(es) employedas the operating environmentfor plasma discharge. The power supply is important as there can be multiple variables applied to generate plasma andvarying each one can havea significant impact on how it behaves. Examples of such parameters include the frequency, duty cycle, voltage, current, and the number of pulses per unit time for the associate power. Gas supplies create the potential for certain chemistries to arise that allow for the processing of many types of samples. For these reasons, it is crucial that diagnostics and monitoring continue to be carried out on the many plasma systems available and currently under development so that the understanding of the multitude of possibilities that arise when using NTP for application purposes can be furthered and set with more confidence. By doing this, not only are the processes and physical properties of plasma better understood, but the mechanisms and reasons for the changes in surface properties, food modification, or biological responses are better elucidated,enablingmore efficient application methods to be developed

    Impact of plasma jet geometry on residence times of radical species

    Get PDF
    Numerous electrode geometries and power supplies, both commercial and in-house, have been employed for the generation of low-temperature atmospheric plasma jets. In this work, the development and operation of a 12 jet nonthermal atmospheric plasma system is presented. The study is based on optical spectroscopy as a diagnostic method due to its nonintrusive nature. A key focus of this study was the material selection (conductive and nonconductive), with several polymers screened for the jet design leading to polyacetal as the choice material. Their results are compared with other atmospheric plasma jet systems. The results show a significant increase in residence time and the spatial homogeneity for ambient air's main species, including: OH, O I, O2, O3, N2, and N2+. Their densities are studied with respect to treatment time, distance, duty cycle, and discharge frequency, as well as the jets' carrier gas chemistries (argon and helium). For their plasma jet system, the bulk of the chemical reactions occur in the surrounding atmosphere and not in the jet nozzle, which is different from most other plasma jet systems. The electron energy distribution function, for the given chemistries, is also reporte

    Dissipation of Pesticide Residues on Grapes and Strawberries Using Plasma-Activated Water

    Get PDF
    In this study, we present a novel atmospheric air plasma discharge for the generation of plasma-activated water (PAW), with the aim of reducing pesticide residues on fresh fruit. For this purpose, a large discharge volume pin-to-plate cold plasma reactor was employed. The pesticide-spiked grapes and strawberries were processed with varying PAW concentrations to study their efficacies for pesticide degradation combined with an evaluation of any induced changes in key nutritional and quality attributes. The results suggest that the reduction of chlorpyrifos was 79% on grapes and 69% on strawberries while that of carbaryl was 86% on grapes and 73% on strawberries, respectively. The degradation of pesticides in PAW is due to the generation of metastable reactive species including nitrates, nitrites, and hydrogen peroxide. The high oxidation potential and acidic environment of this PAW are proposed as important actors for pesticide dissipation. In addition to the effective pesticide reductions obtained, there were no significant changes in the key physical attributes (color and firmness) of the treated samples and only slight changes in the ascorbic acid levels observed for both strawberries and grapes. This study points to the effective potential of PAW for chemical decontamination of fruit while maintaining important quality and nutritional parameters

    Impact of atmospheric pressure nonequilibrium plasma discharge on polymer surface metrology

    Get PDF
    Due to the attraction of plasma technologies as a clean and efficient means of surface modification, significant research has gone into the physical and chemical aspects of polymer functionalization. In this study, it was shown that the use of an atmospheric plasma jet can efficiently modify the surface of polyethylene terephthalate samples and change their hydrophobic properties to more hydrophilic characteristics. The dependence on the changes with respect to time, distance, and atomic oxygen (O I) intensity were considered as factors. It was found that with closer proximity to the plasma source (without causing thermal degradation) and with increasing levels of O I, that the changes of water contact angle and surface free energy can be maximized. It was also observed that the electron energy distribution function, for a given chemistry, significantly differed with changes in distance from the jet nozzle. This shows that for this type of plasma jet system, the bulk of the chemical reactions occur in the nozzle of the jet and not in the surrounding atmosphere. Therefore, this leads to more efficient energy transfer, higher gas temperatures, and better surface activation of samples when compared to systems that produce external chemical reactions due to more diffusion in the surrounding atmosphere and loss of reactive species to other atoms and molecules that are present

    Significance of a Non-Thermal Plasma Treatment on LDPE Biodegradation with Pseudomonas Aeruginosa

    Get PDF
    The use of plastics has spanned across almost all aspects of day to day life. Although their uses are invaluable, they contribute to the generation of a lot of waste products that end up in the environment and end up polluting natural habitats such as forests and the ocean. By treating low-density polyethylene (LDPE) samples with non-thermal plasma in ambient air and with an addition of 4% CO2, the biodegradation of the samples can be increased due to an increase in oxidative species causing better cell adhesion and acceptance on the polymer sample surface. It was, however, found that the use of this slight addition of CO2 aided in the biodegradation of the LDPE samples more than with solely ambient air as the carbon bonds measured from Raman spectroscopy were seen to decrease even more with this change in gas composition and chemistry. The results show that the largest increase of polymer degradation occurs when a voltage of 32 kV is applied over 300 s and with a mixture of ambient air and CO2 in the ratio 25:1

    Significance of a Non-Thermal Plasma Treatment on LDPE Biodegradation with Pseudomonas Aeruginosa

    Get PDF
    The use of plastics has spanned across almost all aspects of day to day life. Although their uses are invaluable, they contribute to the generation of a lot of waste products that end up in the environment and end up polluting natural habitats such as forests and the ocean. By treating low-density polyethylene (LDPE) samples with non-thermal plasma in ambient air and with an addition of ≈4% CO2, the biodegradation of the samples can be increased due to an increase in oxidative species causing better cell adhesion and acceptance on the polymer sample surface. It was, however, found that the use of this slight addition of CO2 aided in the biodegradation of the LDPE samples more than with solely ambient air as the carbon bonds measured from Raman spectroscopy were seen to decrease even more with this change in gas composition and chemistry. The results show that the largest increase of polymer degradation occurs when a voltage of 32 kV is applied over 300 s and with a mixture of ambient air and CO2 in the ratio 25:1

    Spectroscopic study of excited molecular nitrogen generation due to interactions of metastable noble gas atoms

    Get PDF
    This work provides an insight into the generation of excited nitrogen species by allowing noble gases to interact both with one another and ambient air. He and Ar were utilized to generate the optimum selectivity process to create reactive nitrogen species. An optimum setting for the generation of excited molecular nitrogen species, based on their excited energy levels, was obtained when using a mixture of Ar-He at a ratio of 10:1. At that point, when a voltage of 27 kV is applied to the system, it reached the maximum efficiency for selectivity processes to occur which allowed for a greater non-radiative transfer of energy through the mixture of noble gas atoms and into the molecular nitrogen present in ambient air

    Diagnostics of a Large Volume Pin-to-Plate Atmospheric Plasma Source for the Study of Plasma Species Interactions with Cancer Cell Cultures

    Get PDF
    A large gap pin-to-plate, atmospheric pressure plasma reactor is demonstrated as means of in vitro study of plasma species interactions with cell cultures. By employing optical emission and optical absorption spectroscopy, we report that the pin-to-pate plasma array had an optimal discharge frequency for cell death of 1000 Hz in ambient air for the target cancer cell line; human glioblastoma multiform (U-251MG). The detected plasma chemistry contained reactive oxygen and nitrogen species including OH, N2, N2+, and O3. We show that, by varying the plasma discharge frequency, the plasma chemistry can be tailored to contain up to 8.85 times higher levels of reactive oxygen species as well as a factor increase of up to 2.86 for levels of reactive nitrogen species. At higher frequencies, reactive oxygen species are more dominant than reactive nitrogen species which allows for a more dynamic and controlled environment for sample study without modifying the inducer gas conditions. When used for treatment of culture media and cell cultures, variation of the plasma discharge frequency over the range 1000-2500 Hz demonstrated a clear dependence of the responses with the highest cytotoxic responses observed for 1000 Hz. We propose that the reactor offers a means of studying plasma-cell interactions and possible co-factors such as pro-drugs and nano particles for a large volume of samples and conditions due to the use of well plates

    Cold Atmospheric Plasma Stimulates Clathrin-Dependent Endocytosis to Repair Oxidised Membrane and Enhance Uptake of Nanomaterial in Glioblastoma Multiforme Cells

    Get PDF
    peer-reviewedCold atmospheric plasma (CAP) enhances uptake and accumulation of nanoparticles and promotes synergistic cytotoxicity against cancer cells. However, the mechanisms are not well understood. In this study, we investigate the enhanced uptake of theranostic nanomaterials by CAP. Numerical modelling of the uptake of gold nanoparticle into U373MG Glioblastoma multiforme (GBM) cells predicts that CAP may introduce a new uptake route. We demonstrate that cell membrane repair pathways play the main role in this stimulated new uptake route, following non-toxic doses of dielectric barrier discharge CAP. CAP treatment induces cellular membrane damage, mainly via lipid peroxidation as a result of reactive oxygen species (ROS) generation. Membranes rich in peroxidised lipids are then trafficked into cells via membrane repairing endocytosis. We confirm that the enhanced uptake of nanomaterials is clathrin-dependent using chemical inhibitors and silencing of gene expression. Therefore, CAP-stimulated membrane repair increases endocytosis and accelerates the uptake of gold nanoparticles into U373MG cells after CAP treatment. We demonstrate the utility of CAP to model membrane oxidative damage in cells and characterise a previously unreported mechanism of membrane repair to trigger nanomaterial uptake. This knowledge will underpin the development of new delivery strategies for theranostic nanoparticles into cancer cells

    The relationship between buildings and health: A systematic review

    Get PDF
    © 2018 The Author(s). Published by Oxford University Press on behalf of Faculty of 268 Public Health. All rights reserved. Background The built environment exerts one of the strongest directly measurable effects on physical and mental health, yet the evidence base underpinning the design of healthy urban planning is not fully developed. Method This study provides a systematic review of quantitative studies assessing the impact of buildings on health. In total, 7127 studies were identified from a structured search of eight databases combined with manual searching for grey literature. Only quantitative studies conducted between January 2000 and November 2016 were eligible for inclusion. Studies were assessed using the quality assessment tool for quantitative studies. Results In total, 39 studies were included in this review. Findings showed consistently that housing refurbishment and modifications, provision of adequate heating, improvements to ventilation and water supply were associated with improved respiratory outcomes, quality of life and mental health. Prioritization of housing for vulnerable groups led to improved wellbeing. However, the quality of the underpinning evidence and lack of methodological rigour in most of the studies makes it difficult to draw causal links. Conclusion This review identified evidence to demonstrate the strong association between certain features of housing and wellbeing such as adequate heating and ventilation. Our findings highlight the need for strengthening of the evidence base in order for meaningful conclusions to be drawn
    corecore