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Abstract 

A large gap pin-to-plate, atmospheric pressure plasma reactor is demonstrated as means of in 

vitro study of plasma species interactions with cell cultures. By employing optical emission 

and optical absorption spectroscopy, we report that the pin-to-pate plasma array had an optimal 

discharge frequency for cell death of 1000 Hz in ambient air for the target cancer cell line; 

human glioblastoma multiform (U-251MG). The detected plasma chemistry contained reactive 

oxygen and nitrogen species including OH, N2, N2
+, and O3. We show that, by varying the 

plasma discharge frequency, the plasma chemistry can be tailored to contain up to 8.85 times 

higher levels of reactive oxygen species as well as a factor increase of up to 2.86 for levels of 

reactive nitrogen species. At higher frequencies, reactive oxygen species are more dominant 

than reactive nitrogen species which allows for a more dynamic and controlled environment 

for sample study without modifying the inducer gas conditions. When used for treatment of 

culture media and cell cultures, variation of the plasma discharge frequency over the range 

1000-2500 Hz demonstrated a clear dependence of the responses with the highest cytotoxic 

responses observed for 1000 Hz. We propose that the reactor offers a means of studying 

plasma-cell interactions and possible co-factors such as pro-drugs and nano particles for a large 

volume of samples and conditions due to the use of well plates.   

  



1. Introduction 

Studies of non-thermal plasma (NTP) have shown that they can be utilised for a wide range of 

applications, including; food preservation, wound sterilisation, enhanced crop growth, 

pollution abatement, volatile organic compound (VOC) removal, polymer functionalisation, 

and water purification.[1-5] Such a broad variability of applications is due to the large range of 

gas chemistries that can be generated using NTP systems. By using ambient air, reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) can be generated to interact with 

target samples. Examples of ROS include O, O2
*, O3, OH, and NO, examples of RNS being N, 

N2
*, N2

+, and NxOy. These reactive species can interact with synthetic and/or biological samples 

and, when the plasma conditions are appropriately tailored, can cause alterations within cells 

that can lead to cancer cell death.[6] The plasma chemistry can be altered by introducing 

different gases into the system environment at varying percentages and ratios. For example, 

adding a small percentage of CO2 into a system that is running predominantly on ambient air 

can lead to higher levels of O3 formation, which can be further optimised with the introduction 

of other secondary gases such as Ar.[7-9] Introducing inert gases such as Ar and He gives rise 

to the production of inert excited species that can bombard and interact with sample surfaces 

and give rise to more binding sites or can aid in the formation of other reactive species, such 

as OH and N2
*, through synergistic energy transfers.[10] 

 An emerging research focus in the applications of plasma science is the treatment of 

cancer cells to develop alternatives or complementary treatments to conventional therapeutic 

approaches.[11] Interest in the use of NTP sources for cancer treatment has arisen due to their 

ease of use, the potential for minimising treatment side effects, and reducing damage to healthy 

cells by more specifically targeting cancerous cells. This potential comes from the versatile 

chemistry produced by NTP discharges. Numerous in vitro studies have shown that 

cytotoxicity can be induced through the generation of RONS, causing a disruption of various 



cell functions.[12, 13] Claims as to which reactive species are responsible for cancer cell death 

identify H2O2, OH, O2
-, O3 and NOx as important candidates.[12, 13] There are a host of possible 

chemical reactions and pathways that occur within plasma discharges and the sample 

boundaries to which they are exposed, but some samples are more resilient to particular reactive 

species, while being susceptible to others. Specific assays can be carried out to determine which 

species and reaction pathways are most likely to induce cytotoxicity in cancer cells. Through 

different comparative methods, studies have shown that the presence of ROS, such as peroxides 

and superoxides, causes intracellular stress to a greater extent than RNS, for in vitro treatments 

of various human cell lines, including glioblastomas, brain, lung, blood, cervical, melanoma, 

and breast cancer.[12, 14] The use of NTP discharges can be employed to disrupt the growth of 

various cancer cells, with lower cytotoxic impact on normal host cells, due to preferential ROS 

interactions that can initiate cell cycle disruption and apoptosis in cancerous cells.[15, 16]  

 Given that the gas chemistry interactions of the plasma discharge are the most important 

factors in plasma processing techniques, there are many variables that need to be considered in 

order to optimise NTP systems for specific applications. These include voltage, discharge 

frequency, duty cycle, discharge gap, electrode geometry, and dielectric material selection. It 

is well known that varied input power to a system (voltage, current, and pulse) gives rise to 

more intense, and possibly differing modes of plasma discharges.[17] Recently, focus on 

electrode designs has allowed NTP systems to become much more versatile, efficient, and to 

create more homogeneous discharges for more equal surface interactions.[18-22] One of the 

designs that has been developed and investigated is pin-to-plate based electrodes. By creating 

an array of pins that are connected to a high voltage source and allowing a plate electrode to 

act as the ground, a stable and efficient plasma can be achieved.[23] The efficiency can be seen 

in the relatively lower values of power consumption compared to purely plate-to-plate 

dielectric barrier discharge systems, resulting in a more diffusive nature of the discharge over 



sample surfaces.[23, 24] Utilising pin type electrodes can enable finer control over the distribution 

of the electric field, which leads to a focusing effect that produces a more energetic and dense 

plasma. This can then result in a higher number of streamer channels which form higher levels 

of reactive species due to higher gas collision and excitation rates. It has also been shown that 

each pin within such pin-to-plate systems creates a diffusive discharge that has an area much 

larger than the area of the pin tip.[23] These qualities create an environment that allows for more 

interactions between reactive species and samples being treated, thus enabling better coverage 

of sample surface areas, speeding up treatment processes, and aiding in larger scale plasma 

discharges to be generated. 

 In the current work, a novel pin-to-plate NTP system is characterised, and the 

dependence of its efficacy for cell death on plasma generation conditions is demonstrated in a 

human cancer cell line U-251MG, cultured in vitro. In order to gain more insight into the 

interactions of non-thermal plasma discharges and how they create an environment conducive 

to higher levels of reaction mechanisms, the plasma discharge is initially characterised and 

optimised by a combination of optical absorption spectroscopy (OAS) and optical emission 

spectroscopy (OES). The effect of the plasma discharge conditions on the generation of 

reactive species in cell culture medium is then investigated. Finally, it is demonstrated that 

optimised plasma discharge conditions can lead to enhanced cell death rates in human cancer 

cells, in vitro. 

 

 

 

 



2. Materials and Methods 

2.1 System Configuration 

A large gap pin-to-plate electrode was employed, which facilitated the insertion of well plates 

into the plasma discharge. The 88-pin stainless-steel electrode was supplied by PlasmaLeap 

Technologies (Dublin, Ireland). The ground and HV electrodes were made of stainless steel 

with a discharge gap of 4 cm between them. The gap between each pin was 14 mm with the 

dimensions of the pins being: length of 25 – 29 mm and diameter 2 mm. In order to create a 

plasma discharge that is as homogeneous as possible throughout the discharge volume, the pins 

are arranged in a slightly convex manner. This is done by varying the length of the pins on the 

stainless-steel high voltage plate such that they are gradually set closer to the stainless-steel 

ground plate from the edge of the pin array to the centre, leaving the central pins the closest to 

the ground plate. By using this geometry, the electric field is distributed to minimise the losses 

at the edge and corners of the high voltage plate. The electrode configuration was powered by 

an AC supply (Leap100, PlasmaLeap Technologies, Dublin, Ireland). The design facilitated 

the control of resonance frequency (30-125 kHz), discharge frequency (50 – 3000 Hz), power 

(50 – 400 W), with a discharge gap of a maximum of 55 mm. For this study, the duty cycle 

was set at 54, 72, or 90 μs. The resonant frequency was set at 55.51 kHz, and the discharge 

frequency was varied in the range 100 – 2500 Hz. The discharge gap was kept at 40 mm, the 

samples prepped for treatment being placed in the centre of the system on the ground plate. 

Figure 1 shows how the system was set up for sample treatment. 

 

 

  



 

 

 

 

 

Figure 1:  Schematic and photograph of the pin reactor, with the inclusion of a well plate in 

the discharge gap. (a) Schematic of the pin reactor used (b) Photograph of the atmospheric air 

discharge. 

2.2 Electrical Characterisation 

The electrical characterisation of the system was performed by connecting a passive probe 

(CP6990-NA Cal Test Electronics, Yorba Linda, CA, USA) to the ground wire in order to 

measure the current and by having a high voltage probe (VD-100 North Star, Bainbridge Island, 

WA, USA) connected in parallel to the high voltage and ground plate to measure the applied 

voltage. By measuring the output voltage and current from the transformer, the power needed 



to generate the plasma discharge can be measured and maintained for continuous use and better 

repeatability. Current measurements can also be used to ascertain the behaviour of the plasma 

discharge as the fluctuation in current represents changes in electron energetics. 

2.3 Optical Diagnostics 

2.3.1 OES 

In order to determine the gas chemistry of the plasma discharge and the interactions that may 

occur at the sample boundary of the cell culture media during treatment, OES and OAS were 

used to monitor and characterise the reactive species formed in the discharge. Both of these 

measurement techniques were carried out by using an Edmund Optics CCD spectrometer that 

has a wavelength range of 200 – 850 nm. To record the spectra during the measurement 

processes, for both OES and OAS, the software BWSpecTM was used. The spectral resolution 

for this particular spectrometer is between 0.6 and 1.8 nm and is wavelength dependent. Due 

to the limited spectral resolution, there may be overlap of emission lines of certain species, 

which leads to a need for a deconvolution process. However, in this study, the spectral lines 

that are studied are separated by large enough ranges that the peaks of interest have no overlap 

with those of other emissive species. OES measurements were carried out at 15 points on the 

NTP system used in this study. The first point was set at a (0, 0) coordinate at the ground plate, 

below where the first row of pins began, and the subsequent points were set at 4 cm intervals 

up to 16 cm to the right of the initial position. These were set at 2 cm and 4 cm above the 

ground plate to give a full spatial interpretation of the plasma discharge. The acquisition of 

each spectrum was carried out with an integration time of 2000 ms and the time between each 

spectrum was 5.5 s. In order to carry out these measurements, a fibre optic cable was used that 

had an adjustable lens attached to the end and was directed perpendicular to the system. The 

species that were detected with OES were OH at 300 nm, N2 from the second positive system 



(SPS) from 315-380 nm, and N2
+ from the first negative system (FNS) at 391 nm. After 

finishing the OES measurements, the spectra were analysed by integrating the area under each 

peak of interest to calculate the value of the total intensity, in arbitrary units. 

 From the OES data obtained, a line ratio method was used to determine the distribution 

of electron energies within the discharge.[10] Given that the spectrometer used gives the 

intensity results in arbitrary units, the method employed only gives an indication as to whether 

there is a higher density of low or high energy electrons. From this, the most probable reaction 

mechanisms and how certain species are formed can be asserted. By using the total emission 

intensity of N2 at 337 nm and the total emission intensity of N2
+ at 391 nm, the line ratio shown 

in equation 1 can be used. It has been demonstrated in other works that the dominant route for 

the excitation of these two species is from direct electron excitation.[25, 26] The excitation energy 

of N2 at 337 nm is 11.01 eV and the excitation for N2
+ at 391 nm is 18.8 eV. From this, the line 

ratio gives a good indicator as to the electron energy distribution function (EEDF) and what 

energetics can be expected within the plasma discharge with respect to the spatial and temporal 

evolution of the gas chemistry. 

𝐸𝐸𝐷𝐹 =  
𝐼(337 nm)

𝐼(391 𝑛𝑚)
=  

𝐼(𝑁2)

𝐼(N2
+)

     (1) 

 

2.3.2 OAS 

With regard to OAS measurements, there may be an overlap of different light absorbing 

reactive species, as there can be a large band of absorbed wavelengths with a resonant 

absorption wavelength. Of interest in this study was O3, which has a strong absorbance in the 

UV-region of the spectrum. There are, however, other reactive species that may absorb in this 

region, such as NO2. In order to determine whether or not there would be any influence and 



interference from this, Dräger tubes were used to detect whether there was any concentration 

of NO2 after plasma discharge. From this, there was found to be no detectable amounts of NO2 

and the emission spectrum in Figure 4(d) shows no detectable amounts of NO that are typically 

found between 240 – 260 nm. The gas chemistry that has been measured, and that is explained 

in greater detail in section 3, gives an insight into the reaction mechanisms giving rise to the 

generation of reactive species. On this basis, the evaluation of O3 became the main objective 

of the OAS measurements. 

 In order to carry out the OAS measurement of the generated plasma, two fibre optic 

cables were used. Both had adjustable lenses to optimise the focal point of detection. They 

were placed perpendicular to one another at a distance of 25 cm and had a direct line-of-sight 

between them. One fibre optic cable was connected to a deuterium-tungsten UV-Vis-NIR light 

source and the other to the CCD spectrometer to detect the incoming light. By referencing the 

incoming light from the plasma discharge, the average optical density of different absorbing 

species can be determined. The spectra were measured with an integration time of 550 ms at 

intervals of 1450 ms between each measurement. OAS measurements were analysed using 

equation 2 to find the average spatial density of O3 during the plasma discharge and post-

discharge. In equation 2, D(t) is the average spatial density (cm-3), L is the optical path (cm), 

I(0) is the reference intensity with no plasma discharge (A.U.), I(t) is the measured intensity 

(A.U.) during and after plasma discharge, and σ(λ) is the wavelength dependent absorption 

cross-section for the species of interest. For O3, the wavelength of optimal absorption is taken 

as 253.7 nm which gives an absorption cross-section value of 1.154 x 10-17 cm2.[8] 

𝐷(𝑡) =  
1

𝜎(𝜆)𝐿
𝑙𝑛

𝐼(0)

𝐼(𝑡)
     (2) 

 

 



 

 

2.4 Chemical Analysis of Reactive Species in cell culture medium 

Nitrite concentrations in the plasma treated water and Dulbecco’s modified eagle's cell culture 

medium (DMEM) samples were quantified by employing the Griess reagent (N-(1-naphthyl) 

ethylenediamine dihydrochloride) spectrophotometric method.[27] This was accomplished by 

the addition of 100 μl sample, trichloroacetic acid and Griess reagent. The reaction mixture 

was incubated at 37 °C for 30 min, after which the absorbance was determined at a wavelength 

of 548 nm using a UV–visible spectrophotometer (Shimadzu UV-1800, Shimadzu Scientific 

Instruments Kyoto, Japan). A calibration curve was prepared using a standard solution of 

sodium nitrite. Nitrate concentrations were determined according to the procedure in reference 

[27]. Hydrogen peroxide concentrations were determined using the titanium oxysulfate 

colorimetric method.[28] For this purpose, a total of 10 µl TiOSO4 solution were added to 100 

µl of treated samples. After 10 min incubation, with the same conditions previously used, 

absorbance was read on a spectrophotometric plate reader at a wavelength of 405 nm. 

2.5 Cancer Cells Cytotoxicity 

2.5.1 Cell Culture 

Human glioblastoma multiform (U-251MG, formerly known as U-373 MG-CD14) cells were 

obtained from Trinity College Dublin, Ireland. Human epithelial carcinoma (A431) cells were 

purchased from ATCC European Distributor (LGC Standards, Teddington, UK). Cells were 

cultivated with DMEM - Dulbecco's Modified Eagle Medium without sodium pyruvate 

(Sigma-Aldrich, Merck Group, Arklow, Ireland) and supplied with 10% FBS (Sigma-Aldrich) 



and 1% penicillin/streptomycin (Sigma-Aldrich). U251MG cells were maintained in a 

humidified incubator containing 5% CO2 at 37 °C.  

 

2.5.2 Cell viability assay  

U251MG cells were seeded at a density of 2 x 103 into flat bottom 96 well-plates (Sarstedt, 

Ltd., Wexford, Ireland) and allowed to adhere overnight. 80 µL of medium were removed 

before treatment, leaving 20 µL of medium in each well. In order to determine the optimal 

discharge frequency for sample treatments, the cytotoxic effects of the pin-to-plate device on 

U251MG human multiforme glioblastoma cells were measured at discharge frequencies of 

1000, 2000, and 2500 Hz at 240 V and 72 µs. Plates were then treated with the pin-to-plate 

discharge at 7 different time points (5, 10, 20, 40, 80, 160, 320 – (s)) using a duty cycle of 72 

µs, 240 V and frequency of 1000 Hz. Fresh medium was added to the wells after treatment and 

cells were then incubated at 37 ºC for 96 hours.  

Cell viability was analysed using the Alamar Blue™ Cell Viability Reagent (Thermo 

Fisher, Dublin, Ireland), a resazurin-based solution that functions as a cell viability indicator 

by using the reducing power of living cells to quantitatively measure viability.[29] Cells were 

washed once with phosphate-buffered saline (PBS) and incubated for 3 hours at 37 °C with a 

10% Alamar Blue™ solution. Fluorescence was measured using an excitation wavelength of 

530 nm and an emission wavelength of 595 nm on a Varioskan Lux multi-plate reader (Thermo 

Fisher). All experiments were performed at least three independent times with a minimum of 

24 replicates per experiment. Cytotoxicity data was fitted to determine the Inhibitory 

Concentration (IC50) using a 4 parameter Hill equation of the form f(x) = min + (max-

min)/(1+(x/IC50) 
n), where n is the Hill slope. 



3. Results and Discussion 

A combination of electrical and optical measurements were employed to identify the optimum 

operating parameters for reactive species generation. Following optimisation of the parameters, 

these were then used for the treatment of U251MG human glioblastoma multiforme cells.  

3.1 Electrical Characterisation 

Varying the voltage, duty cycle, and discharge frequency and measuring the changes in the 

actual current and voltage across the system in response to parameter changes provided insights 

into the dynamics that occur within the discharge.  

 The discharge frequency was initially varied to determine which frequency was optimal 

for generating the plasma discharge. Figure 2(a) shows that, between 100 – 3000 Hz, the 

discharge voltage increases and reaches a plateau at 600 Hz, at which point it begins to steadily 

decline. Figure 2(b) highlights changes in the current measured with respect to the discharge 

frequency. Overall, the current decreases significantly, but plateaus in the range from 100 – 

500 Hz and from 2000 – 2600 Hz. Overall, the system maintains a plasma discharge 

characterised as a glow discharge. The effects observed can be explained by the interaction of 

the electric field and the impact it has on electron excitation and, therefore, plasma ignition. 

Both the low and high discharge frequencies induce instabilities and cause premature 

quenching of the plasma. When the discharge frequency is too low for the system being used, 

electrons accumulate rapidly and cause the opposing electric field to increase too quickly and 

suppress the rise of the applied voltage. For this system, the lower frequency range is prescribed 

as being 0 – 800 Hz. On the other hand, when the discharge frequency is too high, the electrons 

that are formed in the plasma bulk become trapped within the inner electrode space and are 

unable to reach the electrodes to form the opposing electric field. For this system, the lower 

frequency range is prescribed as being 1900 – 3000 Hz. Both events prematurely quench the 



plasma discharge.[31] Therefore, the discharge frequency must allow for electron kinetics to 

reach a high enough energy to create a strong plasma discharge that has a higher level of 

electron kinetics, but not so much that they induce a self-quenching event. The optimum 

discharge frequency for this work was found to be 1000 Hz, which was further validated by 

the optical results shown in Figures 4 and 5.  

 

 

Figure 2: (a) the changes in discharge voltage with frequency and (b) the change in current 

with respect to frequency. For each graph, the duty cycle was kept at 54 μs. 



 

 

 

Figure 3: (a) changes in discharge voltage with variation in system voltage and duty cycle and 

(b) the change in current with variation in system voltage and duty cycle. For each of these 

graphs, the discharge frequency was kept at 1000 Hz. 

 

 



 

3.2 Optical Diagnostics 

3.2.1 Parameter Optimisation 

OES and OAS were used to measure the formation of different reactive species over time as a 

function of voltage, duty cycle, and discharge frequency. As can be seen in Figure 4(a), the 

optimum discharge frequency for the formation of N2 at 337 nm, and by association of the SPS 

group, given the similar excitation energies, is 1000 Hz. Although there are comparable levels 

detected at 1300 Hz, there is a larger fluctuation over the timescale of the measurement (1-70 

sec). In Figure 4(b), it can be seen that the largest formation of N2
+ occurs at the lower 

frequencies (600 and 800 Hz) and at 1300 Hz. The higher levels of N2
+ detected at the lower 

frequencies is due to the higher energetics of the electrons. Although not quite self-quenching 

at this point, there is still an issue of initiating a large cascade event to form more reactive 

species, and so the kinetic transfer of energy through collisional means excites N2 to N2
+. This 

is evident when noting that low levels of excited N2 at 337 nm are seen at these lower 

frequencies. However, there is a relatively large amount of N2
+ generated at 1000 Hz. Given 

that there is a higher and consistent level of N2 from 337 nm (and the SPS) at 1000 Hz and a 

relatively high level of N2
+ formed at the same discharge frequency, it seems optimal to use 

this value for cell target study. 

OAS data can be employed to support the evidence that 1000 Hz is the optimum 

discharge frequency. As can be seen in Figure 5, the average spatial density of O3 increases 

with the plasma discharge time. It is also observed that the lifetime of O3 is considerable and 

there is a substantial density remaining within the discharge zone when the plasma discharge 

has ceased. This allows for the option of leaving samples within the system for a period post 

discharge. Although there is a range of frequencies within which the highest amount of O3 is 



formed, the optimum is again suggested to be 1000 Hz, as this allows for an equally high 

generation of N2 and N2
+. 

 

 



 

 

Figure 4: Changes seen in (a) N2-337 nm (b) N2
+-391 nm and (c) the EEDF calculated from 

the line ratio of (337 nm/391 nm) (d) single spectrum of all detected emission species. 

 

  



 

Figure 5: The variation of the average spatial density of O3 with respect to the discharge 

frequency and temporal evolution. The plasma discharge was set to run for 60 s and the total 

measurement time was 200 s. This was to allow for measurement of O3 during and post-

discharge. 

3.2.2 Spatial Characterisation 

The spatial evolution of the total intensity of N2 from the SPS is shown in Figure 6(a). This 

was measured by investigating each peak found in this group, being 315, 337, 357, and 380 

nm. Each was found to follow the same trend as shown for N2-337nm in Figure 4(a). The 

maximum values were found to be at the tip of the edge pins, where the electric field is highest. 

and where the border of the discharge zone meets the surrounding ambient air. Greater levels 

of N2 are expected to be formed at the boundary, as there is lower quenching as a result of 

reduced reaction rates due to the electronegativity of other reactive species (i.e. O3). The 

intensity of N2
+, the only emission detected that belongs to the FNS, is shown in Figure 6(b). 

It follows a similar trend to that seen for N2 of the SPS and the same reasoning can be applied. 

Figure 6(c) shows that the OH values are highest around the pin region and are relatively 



consistent throughout the rest of the discharge volume. This may be due to the interactions that 

occur between O, O2, O3, and H2O. Although there is no detection of atomic oxygen, it is 

reasonable to assume that the majority are converted to O3. What remains from these reactions 

may still be in a sufficiently energetic state to dissociate H2O due to its low excitation levels 

and give rise to the formation of more OH, as shown in equations 1-3, in which M is a third 

chemical constituent. In ambient air, M may be N2
*, O, NO, NO2, or OH. Figure 6(d) shows 

the EEDF of the system using the line ratio of (N2-337 nm/N2
+-391 nm) and highlights that the 

central locations are dominated by lower energy species when compared to N2
+. These include 

N2(SPS) and OH, which have excitation energies of 11 eV and 4.17 eV, respectively. This 

could be due to the quenching of N2
+ in the interactions and mechanisms that form O3, reducing 

the amount of detected emissions from this energetic species, due to loss of energy through 

more collisional processes. 

O2 + 𝑒𝑓𝑎𝑠𝑡 → O∗ + O∗ + 𝑒𝑠𝑙𝑜𝑤     (1) 

O∗ +  H2O ↔ 2OH      (2) 

O∗ + O2 + 𝑀∗ → O3 + 𝑀     (3) 

 

 

 

 



 

 



 

 

Figure 6: OES measurements that show the spatial evolution of the emission species that were 

detected in this experiment and are (a) total intensity from the SPS (b) intensity of N2
+ at 391 

nm (c) intensity of OH measured at 300 nm and (d) the EEDF from the line ratio of 

(391nm/337nm) based on the values from (a) and (b). 

 Figure 7 shows the spatial evolution of O3 and its average spatial density. It is shown 

that the highest values of O3 are along the pin tips and throughout the central portion of the 

system, towards the ground plate. The likely reasons for this are twofold. Firstly, the edge of 



the system has high fluctuations of O3, as it is at the boundary edge of the system, and the direct 

electric field. This gives less time for the reactive species to dwell within the electric field and 

maintain high energetic levels, and any O3 generated is readily dissociated through collisional 

processes with other atomic and molecular species, transferring its gained energy in the 

resulting kinetics. Secondly, the central part of the system will most likely have a better electric 

field distribution, exciting species to higher levels and allowing them to maintain such 

energetic states by allowing them to have a longer residence time in the direct electric field. 

 

Figure 7: Spatial evolution of O3 using the maximum value found after 300 s of discharge with 

the voltage set at 240 V and the duty cycle at 91 μs. 

3.3 Reactive Species Formation in Liquids 

The analysis of section 3.2.1 suggests that the characteristics of the plasma discharge are 

dependent on the discharge frequency, and that the optimal operation frequency is ~1000 Hz. 

In terms of applications for treatment of cell cultures, the performance optimisation was 

therefore checked by monitoring the effects of the treatment on cell culture medium, by 

monitoring the production of several metastable species, namely nitrite, nitrate, and hydrogen 



peroxide in both deionised (DI) water and DMEM cell culture medium. This was carried out 

as a function of discharge frequency at a fixed time of 5 minutes and as a function of time at a 

fixed frequency of 1000 Hz. Figure 8 shows that the values of all species were highest at 1000 

Hz. Figure 9(a) indicates that this concentration increases monotonically over the exposure 

time of 0 – 320 seconds. For the case of nitrate species, the measurement similarly shows a 

maximum measured value at 1000 Hz, and an evolution which is continuing to increase after 

320 sec exposure, as shown in Figure 9(b). A similar trend is shown for H2O2 generation. 

However, it can be seen that the production rate is maximum at the early stages of exposure 

and begins to saturate after 1-2 minutes. The results of the analysis further confirm the 

importance of discharge frequency for applications such as the treatment of biological samples. 

 

Figure 8: Concentration values of the reactive species measured within DMEM after 5 minutes 

of treatment at 240 V and 74 µs shows an optimisation of the plasma discharge at 1000 Hz. 

The reactive species generated during plasma treatment undergo several chemical 

reactions to form ROS, such as OH and H2O2. The concentrations of H2O2 were seen to increase 

gradually with increased treatment time, up to ~140 uM after 320 s treatment, in both deionised 



water and DMEM. Due to their short lifetime (3.7×10-9s), OH radicals diffusing from the 

plasma zone to the liquid interface undergo recombination to form hydrogen peroxide 

(oxidation potential 1.77 V).[31] Hydrogen peroxide in the sample solutions can be directly or 

indirectly generated via various reaction mechanisms (e.g., dissociation, photolysis), as 

described by Equations 4-8.  

O3 + OH → HO2 +  O2     (4) 

OH + OH → H2O2      (5) 

O2 + H → HO2      (6) 

H + HO2 → H2O2       (7) 

H2O2 +  O3 → OH + O2 +  HO2    (8) 

 As can be observed in Figure 9, there is an increase in the concentration of nitrates and 

nitrites in both deionised water and DMEM, which can significantly change both the fluid pH 

and electrical conductivity. The dissolution of nitrate to form nitric acid can be explained by 

reaction mechanisms 9 to 14. During plasma treatment, the production of NO mainly follows 

the Zeldovich mechanism.[31] The NO formed can be oxidised to NO2. NO and NO2 can 

subsequently dissolve in water to form nitrates and nitrites (HNO3, NO3, and NO2).
[27] Given 

that there was no emission detected for NO and there were no levels of NO2 detected using 

Dräger detection tubes, they either form and interact immediately with other species and have 

their lifetime reduced or are generated predominantly at the plasma-media boundary. From the 

concentrations measured, the reaction pathways that generate H2O2 may be the most dominant 

interactions at the boundary. Reaction mechanisms 15 - 16 are then suggested as possible 

pathways. 

 



 

 

N2 + 𝑒 → 2N +  𝑒       (9) 

N + 2O → NO2               (10) 

NO2 + H2O2 + H3O → HNO3 + 2H2O             (11) 

HNO3 + 2H2O → NO3 + H3O             (12) 

NO2 + OH → HNO3               (13) 

N2 + O3 + OH → HNO3 + NO             (14) 

HNO3 + OH → H2O2 + NO2              (15) 

HNO3 + O2 → H2O2 + NO3              (16) 

 

 



 

 

Figure 9: Changes in the formation of reactive oxygen and reactive nitrogen species over time 

in deionised water and DMEM with settings at 240 V, 74 µs, and 1000 Hz 

 

 

 

 



3.4 Cytotoxicity 

From the optical plasma diagnostics data and chemical analyses of plasma treated DI water and 

DMEM, the optimal frequency for generating the gas chemistry with the highest concentration 

of both ROS and RNS is 1000 Hz. Varying the voltage and duty cycle can be shown to 

significantly affect the levels, but, comparably, the discharge frequency has the largest impact 

for plasma discharge optimisation.  

 

Figure 10: Cytotoxic effects of the pin-to-plate device on U251MG human multiforme 

glioblastoma cells with different discharge frequencies. All values have been expressed with 

respect to control, as 100%. 

To confirm these findings, U251MG human multiforme glioblastoma cells were 

exposed to plasma generated at 240 V with the discharge frequency varied from 1000 – 2500 

Hz and a duty cycle of 72 μs, with doses of CAP range from 0 s to 320 s. In all cases, a dose 

dependent cytotoxicity is evident after 96 hours, when measured using the Alamar Blue™ cell 



viability assay. In terms of cancer cell line treatment, it can be seen from Figure 10 that the use 

of a plasma discharge frequency of 1000 Hz has the highest cytotoxic impact. Using a 4-

parameter nonlinear logistic equation, the IC50 in sodium pyruvate-free media was measured 

to be ~25 seconds. The observations are consistent with the observations presented in Figure 

8, that a discharge frequency of 1000 Hz produced higher quantities of all reactive species 

measured within the culture medium, and that these generated amounts increased 

monotonically over the timescale 0 – 320 seconds. The cell viability was tested in 24 wells per 

plate (centre part of the plate) and replicated 3x, giving a total of 72 wells analysed. 

4 Conclusion 

The use of human glioblastoma multiform (U-251MG) was to show a potential application of 

this technology as well as to elucidate the main species required to induce cytotoxicity, and 

that the treatment is homogenous over large target sample areas. The work demonstrates the 

potential to perform high throughput screening of samples in wells where co-factors can be 

introduced. For future clinical applications, the work shows that a scaled down multi-pin 

discharge in the glow regime could offer a suitable means of treating tissue directly, 

overcoming the associated challenges of atmospheric air discharges which typically display 

more filamentous discharges. The optical diagnostics of the large gap atmospheric plasma 

discharge demonstrated that the discharge frequency plays a vital role in the formation of 

reactive species. As the frequency was increased, it was found that the optimal discharge 

frequency was 1000 Hz, as this produced the greatest combination of RNS and ROS within the 

plasma. However, at higher frequencies, the emission intensities recorded through OES 

diminished and were not easily detected above 1500 Hz. This was not the case for the detection 

of O3, as large levels were still generated even when approaching a discharge frequency of 

2500 Hz. This allows for a tailoring of the gas chemistry to produce relatively higher ROS 

levels over RNS without changing the atmospheric conditions or gas, allowing for dynamic 



settings to be used for sample treatments or to highlight which reactive species plays a 

dominant role for different effects. It has also been shown that, although there were higher 

emission intensities found around the outer pins of the system a greater density of O3 was 

measured in the central region of the system, the area above the placement of the 96-well plate 

had little variance and allows for a consistent and homogeneous treatment at the sample/plasma 

boundary. It has been demonstrated that the generation of RNS and ROS in cell culture medium 

by the plasma is also highly dependent on the plasma discharge frequency, as is the cytotoxicity 

to glioblastoma cell line. The study demonstrates the importance of appropriate plasma 

diagnostics and the impact of the plasma generation conditions for potential biomedical 

applications of this highly promising emerging technology. 
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