160 research outputs found

    Identifying the most appropriate classifier for underpinning assistive technology adoption for people with dementia: an integration of Fuzzy AHP and VIKOR methods

    Get PDF
    Recently, the number of People with Dementia (PwD) has been rising exponentially across the world. The main symptoms that PwD experience include AQ1 impairments of reasoning, memory, and thought. Owing to the burden faced by this chronic condition, Assistive Technology-based solutions (ATS) have been prescribed as a form of treatment. Nevertheless, it is widely acknowledged that low adoption rates of ATS have hampered their benefits within a health and social care context. It is then necessary to effectively discriminate between adopters and non-adopters of such solutions to avoid cost implications, improve the life quality of adopters, and find intervention alternatives for non-adopters. Several classifiers have been proposed as advancement towards the personalisation of self-management interventions for dementia in a scalable way. As multiple algorithms have been developed, an important step in technology adoption is to select the most appropriate classification alternative based on different criteria. This paper presents the integration of Fuzzy AHP (FAHP) and VIKOR to address this challenge. First, FAHP was used to calculate the criteria and sub-criteria weights under uncertainty and then VIKOR was implemented to rank the classifiers. A case study considering a mobile-based self-management and reminding solution for PwD is described to validate the proposed approach. The results revealed that Easiness of interpretation (GW = 0.192) and Handling of missing data (GW = 0.145) were the two most important criteria. Furthermore, SVM (Qj = 1.0) and AB (Qj = 0.891) were concluded to be the most suitable classifiers for supporting ATS adoption in PwD

    Sanitation of blackwater via sequential wetland and electrochemical treatment

    Get PDF
    The discharge of untreated septage is a major health hazard in countries that lack sewer systems and centralized sewage treatment. Small-scale, point-source treatment units are needed for water treatment and disinfection due to the distributed nature of this discharge, i.e., from single households or community toilets. In this study, a high-rate-wetland coupled with an electrochemical system was developed and demonstrated to treat septage at full scale. The full-scale wetland on average removed 79 +/- 2% chemical oxygen demand (COD), 30 +/- 5% total Kjeldahl nitrogen (TKN), 58 +/- 4% total ammoniacal nitrogen (TAN), and 78 +/- 4% orthophosphate. Pathogens such as coliforms were not fully removed after passage through the wetland. Therefore, the wetland effluent was subsequently treated with an electrochemical cell with a cation exchange membrane where the effluent first passed through the anodic chamber. This lead to in situ chlorine or other oxidant production under acidifying conditions. Upon a residence time of at least 6 h of this anodic effluent in a buffer tank, the fluid was sent through the cathodic chamber where pH neutralization occurred. Overall, the combined system removed 89 +/- 1% COD, 36 +/- 5% TKN, 70 +/- 2% TAN, and 87 +/- 2% ortho-phosphate. An average 5-log unit reduction in coliform was observed. The energy input for the integrated system was on average 16 +/- 3 kWh/m(3), and 11 kWh/m(3) under optimal conditions. Further research is required to optimize the system in terms of stability and energy consumption

    Hybrid method for selection of the optimal process of leachate treatment in waste treatment and valorization plants or landfills

    Full text link
    “The final publication is available at Springer via http://dx.doi.org/10.1007/s10098-014-0834-4”Leachate from waste landfill or treatment plants is a very complex and highly contaminated liquid effluent. In its composition, it is found dissolved organic matter, inorganic salts, heavy metals, and other xenobiotic organic compounds, so it can be toxic, carcinogenic, and capable of inducing a potential risk to biota and humans. European law does not allow such leachate to leave the premises without being depolluted. There are many procedures that enable debugging, always combining different techniques. Choosing the best method to use in each case is a complex decision, as it depends on many tangible and intangible factors that must be weighed to achieve a balance between technical, cost, and environmental sustainability. It is presenting a hybrid method for choosing the optimal combination of techniques to apply in each case, by combining a multicriteria hierarchical analysis based on expert data obtained by the Delphi method with an analysis by the method of VIKOR to reach a consensus solution.Martín Utrillas, MG.; Reyes Medina, M.; Curiel Esparza, J.; Cantó Perelló, J. (2015). Hybrid method for selection of the optimal process of leachate treatment in waste treatment and valorization plants or landfills. Clean Technologies and Environmental Policy. 17(4):873-885. doi:10.1007/s10098-014-0834-4S873885174Abbas AA, Guo J, Ping LZ, Ya PY, Al-Rekabi WS (2009) Review on landfill leachate treatments. AJAS 6(4):672–684Abood AR, Bao J, Abudi Z, Zheng D, Gao C (2013) Pretreatment of nonbiodegradable landfill leachate by air stripping coupled with agitation as ammonia stripping and coagulation–flocculation processes. Clean Technol Environ Policy 15(6):1069–1076Ahn WY, Kang MS, Yim SK, Choi KH (2002) Advanced landfill leachate treatment using an integrated membrane process. Desalination 149(1–3):109–114Al-Subhi Al-Harbi KM (2001) Application of the AHP in project management. Int J Proj Manag 19:19–27Bernasconi M, Choirat C, Seri R (2014) Empirical properties of group preference aggregation methods employed in AHP: theory and evidence. Eur J Oper Res 232(3):584–592Boopathy R, Karthikeyan S, Mandal AB, Sekaran G (2013) Characterization and recovery of sodium chloride from salt-laden solid waste generated from leather industry. Clean Technol Environ Policy 15(1):117–124Brechet T, Tulkens H (2009) Beyond BAT: selecting optimal combinations of available techniques, with an example from the limestone industry. J Environ Manag 90:1790–1801Canto-Perello J, Curiel-Esparza J, Calvo V (2013) Criticality and threat analysis on utility tunnels for planning security policies of utilities in urban underground space. Expert Syst Appl 40(11):4707–4714Chen Y, Liu C, Nie J, Wu S, Wang D (2014) Removal of COD and decolorizing from landfill leachate by Fenton’s reagent advanced oxidation. Clean Technol Environ Policy 16(1):189–193Chiochetta CG, Goetten LC, Almeida SM, Quaranta G, Cotelle S, Radetski CM (2014) Leachates from solid wastes: chemical and eco(geno)toxicological differences between leachates obtained from fresh and stabilized industrial organic sludge. Environ Sci Pollut R 21:1090–1098Chiumenti A, da Borso F, Chiumenti R, Teri F, Segantin P (2013) Treatment of digestate from a co-digestion biogas plant by means of vacuum evaporation: tests for process optimization and environmental sustainability. Waste Manag 33(6):1339–1344Council Directive 1999/31/EC (1999) April 26th 1999, on the landfill of waste. European Union Council, Official Journal L 182, 16/07/1999 P. 0001–0019Curiel-Esparza J, Canto-Perello J (2012) Understanding the major drivers for implementation of municipal sustainable policies in underground space. Int J Sust Dev World 19(6):506–514Curiel-Esparza J, Canto-Perello J (2013) Selecting utilities placement techniques in urban underground engineering. Arch Civ Mech Eng 13(2):276–285Curiel-Esparza J, Canto-Perello J, Calvo MA (2004) Establishing sustainable strategies in urban underground engineering. Sci Eng Ethics 10(3):523–530Dong Y, Zhang G, Hong WC, Xu Y (2010) Consensus models for AHP group decision making under row geometric mean prioritization method. Decis Support Syst 49:281–289Duckstein L, Opricovic S (1980) Multiobjective Optimization in River Basin Development. Water Resour Res 16(1):14–20Ersahin ME, Ozgun H, van Lier JB (2013) Effect of support material properties on dynamic membrane filtration performance. Separ Sci Technol 48(15):2263–2269Gracht HA (2012) Consensus measurement in Delphi studies, review and implications for future quality assurance. Forecast Soc Chang 79(8):1525–1536Grisey E, Laffray X, Contoz O, Cavalli E, Mudry J, Aleya L (2012) The bioaccumulation performance of reeds and cattails in a constructed treatment wetland for removal of heavy metals in landfill leachate treatment (Etueffont, France). Water Air Soil Pollut 223:1723–1741Guoliang Z, Lei Q, Qin M, Zheng F, Dexin W (2013) Aerobic SMBR/reverse osmosis system enhanced by Fenton oxidation for advanced treatment of old municipal landfill leachate. Bioresour Technol 142:261–268Gupta SK, Singh G (2007) Assessment of the Efficiency and Economic Viability of Various Methods of Treatment of Sanitary Landfill Leachate. Environ Monit Assess 135:107–117Heyer KU, Stegmann R (2005) Landfill systems, sanitary landfilling of solid wastes, and long-term problems with leachate. In: Jördening HJ, Winter J (eds) Environmental Biotechnology. Wiley-VCH, Weinheim, p 375Hsu CC, Sandord BA (2007) The Delphi technique: making sense of consensus. PARE 12(10):1–7Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32(4):297–336Lee WS (2013) Merger and acquisition evaluation and decision making model. Serv Ind J 33(15–16):1473–1494Lee GKL, Chan EHW (2008) The analytic hierarchy process (AHP) approach for assessment of urban renewal proposals. Soc Indic Res 89(1):155–168Li G, Wang W, Du Q (2010) Applicability of nanofiltration for the advanced treatment of landfill leachate. J Appl Polym Sci 116(4):2343–2347Mela K, Tiainen T, Heinisuo M (2012) Comparative study of multiple criteria decision making methods for building design. Adv Eng Inform 26:716–726Ozdemir MS, Saaty TL (2006) The unknown in decision making, what to do about it. Eur J Oper Res 174(1):349–359Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150(3):468–493Ritzkowski M, Stegmann R (2012) Landfill aeration worldwide: concepts, indications and findings. Waste Manag 32(7):1411–1419Romero C, Ramos P, Costa C, Marquez MC (2013) Raw and digested municipal waste compost leachate as potential fertilizer: comparison with a commercial fertilizer. J Clean Prod 59:73–78Roubelat F (2011) The Delphi method as a ritual: inquiring the Delphi Oracle. Forecast Soc Chang 78(9):1491–1499Saaty TL (1980) The analytic hierarchy process. Mc Graw-Hill, New YorkSaaty TL (2001) Decision making with dependence and feedback: the analytic network process, 2nd edn. RWS Publications, PittsburghSaaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98Saaty TL (2012) Decision making for leaders. The analytic hierarchy process for decisions in a complex world, 3rd edn. RWS Publications, PittsburghSan Cristobal J (2012) Contractor selection using multicriteria decision-making methods. J Constr Eng M 138(6):751–758Sayadi MK, Heydari M, Shahanaghi K (2009) Extension of VIKOR method for decision making problem with interval numbers. Appl Math Model 33:2257–2262Statnikova RB, Bordetskya A, Statnikov A (2005) Multi-criteria analysis of real-life engineering optimization problems: statement and solution. Nonlinear Anal 63:685–696Syamsuddin J (2010) The use of AHP in security policy decision making: an open office calc application. JSW 5(10):1162–1169Thapa RB, Murayama Y (2010) Drivers of urban growth in the Kathmandu valley, Nepal: examining the efficacy of the analytic hierarchy process. App Geogr 30(1):70–83van Praagh M, Heerenklage J, Smidt E, Modin H, Stegmann R, Persson KM (2009) Potential emissions from two mechanically–biologically pretreated (MBT) wastes. Waste Manag 29(2):859–868Vedaraman N, Shamshath BS, Srinivasan SV (2013) Response surface methodology for decolourisation of leather dye using ozonation in a packed bed reactor. Clean Technol Environ Policy 15(4):607–616Wang Q, Matsufuji Y, Dong L, Huang Q, Hirano F, Tanaka A (2006) Research on leachate recirculation from different types of landfills. Waste Manag 26:815–824Xing W, Lu W, Zhao Y (2013) Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE). Waste Manag 33(2):382–389Yang W, Zhang KN, Chen YG, Zhou XZ, Jin FX (2013) Prediction on contaminant migration in aquifer of fractured granite substrata of landfill. J Cent South Univ 20(11):3193–3201Zavadskas EK, Turskis Z, Tamosaitiene J (2011) Selection of construction enterprises management strategy based on SWOT and multi-criteria analysis. ACME 11(4):1063–108

    Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene

    Get PDF
    Primula vulgaris (primrose) exhibits heterostyly: plants produce self-incompatible pin- or thrum-form flowers, with anthers and stigma at reciprocal heights. Darwin concluded that this arrangement promotes insect-mediated cross-pollination; later studies revealed control by a cluster of genes, or supergene, known as the S (Style length) locus. The P. vulgaris S locus is absent from pin plants and hemizygous in thrum plants (thrum-specific); mutation of S locus genes produces self-fertile homostyle flowers with anthers and stigma at equal heights. Here, we present a 411 Mb P. vulgaris genome assembly of a homozygous inbred long homostyle, representing ~87% of the genome. We annotate over 24,000 P. vulgaris genes, and reveal more genes up-regulated in thrum than pin flowers. We show reduced genomic read coverage across the S locus in other Primula species, including P. veris, where we define the conserved structure and expression of the S locus genes in thrum. Further analysis reveals the S locus has elevated repeat content (64%) compared to the wider genome (37%). Our studies suggest conservation of S locus genetic architecture in Primula, and provide a platform for identification and evolutionary analysis of the S locus and downstream targets that regulate heterostyly in diverse heterostylous species

    Genetically-Based Olfactory Signatures Persist Despite Dietary Variation

    Get PDF
    Individual mice have a unique odor, or odortype, that facilitates individual recognition. Odortypes, like other phenotypes, can be influenced by genetic and environmental variation. The genetic influence derives in part from genes of the major histocompatibility complex (MHC). A major environmental influence is diet, which could obscure the genetic contribution to odortype. Because odortype stability is a prerequisite for individual recognition under normal behavioral conditions, we investigated whether MHC-determined urinary odortypes of inbred mice can be identified in the face of large diet-induced variation. Mice trained to discriminate urines from panels of mice that differed both in diet and MHC type found the diet odor more salient in generalization trials. Nevertheless, when mice were trained to discriminate mice with only MHC differences (but on the same diet), they recognized the MHC difference when tested with urines from mice on a different diet. This indicates that MHC odor profiles remain despite large dietary variation. Chemical analyses of urinary volatile organic compounds (VOCs) extracted by solid phase microextraction (SPME) and analyzed by gas chromatography/mass spectrometry (GC/MS) are consistent with this inference. Although diet influenced VOC variation more than MHC, with algorithmic training (supervised classification) MHC types could be accurately discriminated across different diets. Thus, although there are clear diet effects on urinary volatile profiles, they do not obscure MHC effects

    Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Full text link

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore