39 research outputs found
Influence of industrial by-products on the behavior of geopolymer concrete forsustainable development
Carbon dioxide emission in cement industries is a great concern for environment, which is increasing day by day.Therefore, it is very essential to find a possible material that can be used as a replacement of cement. Geopolymer concreteis a kind of inorganic concrete elucidating the formal usage of industrial and natural waste in either single or combinedform. Geopolymers are amorphous covalently bonded by a 3D network of inorganic molecules of aluminosilicate material.The formation of geopolymer concrete is greatly influenced by several factors such as binder chemical reaction, curingtemperature/period, molarity of the solution, and rate of polymerization. The curing temperature helps in deciding theproperties of geopolymer. Performance variables for geopolymer concrete such as selection of alkaline binder withpozzolana (Fly ash, slag, silica fume etc.) and interrelationship of GPC, reinforcing agent in geopolymer concrete withcomponents responsible for durability are summarized in detail. The durability of concrete is reviewed with structure withshrinkage-resistant, resistant to sulfate attack, and consequences of carbonation. The various consequences of corrosion arealso summarized in last of present review paper. Different research findings in this paper proves successfully thatgeopolymer is better construction material as compare to cement-based concrete
Influence of industrial by-products on the behavior of geopolymer concrete for sustainable development
433-445Carbon dioxideemission in cement industries is a great concern for environment, which is increasing day by day. Therefore, it is very essential to find a possible material that can be used as a replacement of cement. Geopolymer concrete is a kind of inorganic concrete elucidating the formal usage of industrial and natural waste in either single or combined form. Geopolymers are amorphous covalently bonded by a 3D network of inorganic molecules of aluminosilicate material. The formation of geopolymer concrete is greatly influenced by several factors such as binder chemical reaction, curing temperature/period, molarity of the solution, and rate of polymerization. The curing temperature helps in deciding the properties of geopolymer. Performance variables for geopolymer concrete such as selection of alkaline binder with pozzolana (Fly ash, slag, silica fume etc.) and interrelationship of GPC, reinforcing agent in geopolymer concrete with components responsible for durability are summarized in detail. The durability of concrete is reviewed with structure with shrinkage-resistant, resistant to sulfate attack, and consequences of carbonation. The various consequences of corrosion are also summarized in last of present review paper. Different research findings in this paper proves successfully that geopolymer is better construction material as compare to cement-based concrete
Recommended from our members
Virtual Reality for Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration
Background: Virtual reality (VR) is a technology that allows the user to explore and manipulate computer-generated real or artificial three-dimensional multimedia sensory environments in real time to gain practical knowledge that can be used in clinical practice.
Objective: The aim of this systematic review was to evaluate the effectiveness of VR for educating health professionals and improving their knowledge, cognitive skills, attitudes, and satisfaction.
Methods: We performed a systematic review of the effectiveness of VR in pre- and postregistration health professions education following the gold standard Cochrane methodology. We searched 7 databases from the year 1990 to August 2017. No language restrictions were applied. We included randomized controlled trials and cluster-randomized trials. We independently selected studies, extracted data, and assessed risk of bias, and then, we compared the information in pairs. We contacted authors of the studies for additional information if necessary. All pooled analyses were based on random-effects models. We used the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach to rate the quality of the body of evidence.
Results: A total of 31 studies (2407 participants) were included. Meta-analysis of 8 studies found that VR slightly improves postintervention knowledge scores when compared with traditional learning (standardized mean difference [SMD]=0.44; 95% CI 0.18-0.69; I2=49%; 603 participants; moderate certainty evidence) or other types of digital education such as online or offline digital education (SMD=0.43; 95% CI 0.07-0.79; I2=78%; 608 participants [8 studies]; low certainty evidence). Another meta-analysis of 4 studies found that VR improves health professionals’ cognitive skills when compared with traditional learning (SMD=1.12; 95% CI 0.81-1.43; I2=0%; 235 participants; large effect size; moderate certainty evidence). Two studies compared the effect of VR with other forms of digital education on skills, favoring the VR group (SMD=0.5; 95% CI 0.32-0.69; I2=0%; 467 participants; moderate effect size; low certainty evidence). The findings for attitudes and satisfaction were mixed and inconclusive. None of the studies reported any patient-related outcomes, behavior change, as well as unintended or adverse effects of VR. Overall, the certainty of evidence according to the GRADE criteria ranged from low to moderate. We downgraded our certainty of evidence primarily because of the risk of bias and/or inconsistency.
Conclusions: We found evidence suggesting that VR improves postintervention knowledge and skills outcomes of health professionals when compared with traditional education or other types of digital education such as online or offline digital education. The findings on other outcomes are limited. Future research should evaluate the effectiveness of immersive and interactive forms of VR and evaluate other outcomes such as attitude, satisfaction, cost-effectiveness, and clinical practice or behavior change.</br
Does the Axillary Lymph Node Ratio Have Any Added Prognostic Value over pN Staging for South East Asian Breast Cancer Patients?
10.1371/journal.pone.0045809PLoS ONE79
Ethnic Differences in Survival after Breast Cancer in South East Asia
Background: The burden of breast cancer in Asia is escalating. We evaluated the impact of ethnicity on survival after breast cancer in the multi-ethnic region of South East Asia. Methodology/Principal Findings Using the Singapore-Malaysia hospital-based breast cancer registry, we analyzed the association between ethnicity and mortality following breast cancer in 5,264 patients diagnosed between 1990 and 2007 (Chinese: 71.6%, Malay: 18.4%, Indian: 10.0%). We compared survival rates between ethnic groups and calculated adjusted hazard ratios (HR) to estimate the independent effect of ethnicity on survival. Malays (n = 968) presented at a significantly younger age, with larger tumors, and at later stages than the Chinese and Indians. Malays were also more likely to have axillary lymph node metastasis at similar tumor sizes and to have hormone receptor negative and poorly differentiated tumors. Five year overall survival was highest in the Chinese women (75.8%; 95%CI: 74.4%–77.3%) followed by Indians (68.0%; 95%CI: 63.8%–72.2%), and Malays (58.5%; 95%CI: 55.2%–61.7%). Compared to the Chinese, Malay ethnicity was associated with significantly higher risk of all-cause mortality (HR: 1.34; 95%CI: 1.19–1.51), independent of age, stage, tumor characteristics and treatment. Indian ethnicity was not significantly associated with risk of mortality after breast cancer compared to the Chinese (HR: 1.14; 95%CI: 0.98–1.34). Conclusion: In South East Asia, Malay ethnicity is independently associated with poorer survival after breast cancer. Research into underlying reasons, potentially including variations in tumor biology, psychosocial factors, treatment responsiveness and lifestyle after diagnosis, is warranted
Virtual Patient Simulations in Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration.
BACKGROUND: Virtual patients are interactive digital simulations of clinical scenarios for the purpose of health professions education. There is no current collated evidence on the effectiveness of this form of education.
OBJECTIVE: The goal of this study was to evaluate the effectiveness of virtual patients compared with traditional education, blended with traditional education, compared with other types of digital education, and design variants of virtual patients in health professions education. The outcomes of interest were knowledge, skills, attitudes, and satisfaction.
METHODS: We performed a systematic review on the effectiveness of virtual patient simulations in pre- and postregistration health professions education following Cochrane methodology. We searched 7 databases from the year 1990 up to September 2018. No language restrictions were applied. We included randomized controlled trials and cluster randomized trials. We independently selected studies, extracted data, and assessed risk of bias and then compared the information in pairs. We contacted study authors for additional information if necessary. All pooled analyses were based on random-effects models.
RESULTS: A total of 51 trials involving 4696 participants met our inclusion criteria. Furthermore, 25 studies compared virtual patients with traditional education, 11 studies investigated virtual patients as blended learning, 5 studies compared virtual patients with different forms of digital education, and 10 studies compared different design variants. The pooled analysis of studies comparing the effect of virtual patients to traditional education showed similar results for knowledge (standardized mean difference [SMD]=0.11, 95% CI -0.17 to 0.39, I2=74%, n=927) and favored virtual patients for skills (SMD=0.90, 95% CI 0.49 to 1.32, I2=88%, n=897). Studies measuring attitudes and satisfaction predominantly used surveys with item-by-item comparison. Trials comparing virtual patients with different forms of digital education and design variants were not numerous enough to give clear recommendations. Several methodological limitations in the included studies and heterogeneity contributed to a generally low quality of evidence.
CONCLUSIONS: Low to modest and mixed evidence suggests that when compared with traditional education, virtual patients can more effectively improve skills, and at least as effectively improve knowledge. The skills that improved were clinical reasoning, procedural skills, and a mix of procedural and team skills. We found evidence of effectiveness in both high-income and low- and middle-income countries, demonstrating the global applicability of virtual patients. Further research should explore the utility of different design variants of virtual patients
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation