74 research outputs found
A TARGETED LOAD-CARRIAGE TRAINING PROGRAM ELICITS POSITIVE ADAPTATIONS AFTER 10-WEEKS
The purpose of this study was to identify and characterise physical performance responses to a targeted 10-week load-carriage physical training intervention in males. Performance measures of maximal strength, heart rate, rating of perceived exertion, and basic fitness from nine male civilians before and after the 10-week training intervention are presented. There were significant increases in maximal force (~200 N) and aerobic performance (Level. Shuttle 8.9 vs 9,4 variables). Small-to-large effect sizes were shown for basic fitness and perceptual responses. The 10-week load-carriage physical training intervention elicited physical performance improvements and may facilitate load-carriage task performance
IMPROVEMENTS IN LOWER-LIMB STRENGTH ARE ASSOCIATED WITH HIP CONTROL DURING LOAD CARRIAGE IN FEMALES
The purpose of this study was to investigate the effect of lower-limb strength on lower-limb biomechanical responses over the duration of a load carriage march. Female civilians (n=12) completed a 5 km march at 5.5 km·h-1 wearing a 23 kg external load before and after 10 weeks of hip-focussed training. Lower-limb 3D kinematics were acquired during the march, with lower-limb strength measures assessed prior to pre- and post-training marching tasks. Significant increases in lower-limb strength were elicited after training, alongside moderate to strong negative correlations between strength and hip adduction (
Additively manufactured polyethylene terephthalate scaffolds for Scapholunate Interosseous Ligament Reconstruction
The regeneration of the ruptured scapholunate interosseous ligament (SLIL)
represents a clinical challenge. Here, we propose the use of a
Bone-Ligament-Bone (BLB) 3D-printed polyethylene terephthalate (PET) scaffold
for achieving mechanical stabilisation of the scaphoid and lunate following
SLIL rupture. The BLB scaffold featured two bone compartments bridged by
aligned fibres (ligament compartment) mimicking the architecture of the native
tissue. The scaffold presented tensile stiffness in the range of 260+/-38 N/mm
and ultimate load of 113+/-13 N, which would support physiological loading. A
finite element analysis, using inverse finite element analysis for material
property identification, showed an adequate fit between simulation and
experimental data. The scaffold was then biofunctionalized using two different
methods: injected with a Gelatin Methacryloyl solution containing human
mesenchymal stem cell spheroids or seeded with tendon-derived stem cells and
placed in a bioreactor to undergo cyclic deformation. The first approach
demonstrated high cell viability, as cells migrated out of the spheroid and
colonised the interstitial space of the scaffold. These cells adopted an
elongated morphology suggesting the internal architecture of the scaffold
exerted topographical guidance. The second method demonstrated the high
resilience of the scaffold to cyclic deformation and the secretion of a
fibroblastic related protein was enhanced by the mechanical stimulation. This
process promoted the expression of relevant proteins, such as Tenomodulin,
indicating mechanical stimulation may enhance cell differentiation and be
useful prior to surgical implantation. In conclusion, the PET scaffold
presented several promising characteristics for the immediate mechanical
stabilisation of disassociated scaphoid and lunate and, in the longer-term, the
regeneration of the ruptured SLIL
An EMG-Assisted Muscle-Force Driven Finite Element Analysis Pipeline to Investigate Joint- and Tissue-Level Mechanical Responses in Functional Activities : Towards a Rapid Assessment Toolbox
Publisher Copyright: © 1964-2012 IEEE.Joint tissue mechanics (e.g., stress and strain) are believed to have a major involvement in the onset and progression of musculoskeletal disorders, e.g., knee osteoarthritis (KOA). Accordingly, considerable efforts have been made to develop musculoskeletal finite element (MS-FE) models to estimate highly detailed tissue mechanics that predict cartilage degeneration. However, creating such models is time-consuming and requires advanced expertise. This limits these complex, yet promising, MS-FE models to research applications with few participants and makes the models impractical for clinical assessments. Also, these previously developed MS-FE models have not been used to assess activities other than gait. This study introduces and verifies a semi-automated rapid state-of-the-art MS-FE modeling and simulation toolbox incorporating an electromyography- (EMG) assisted MS model and a muscle-force driven FE model of the knee with fibril-reinforced poro(visco)elastic cartilages and menisci. To showcase the usability of the pipeline, we estimated joint- and tissue-level knee mechanics in 15 KOA individuals performing different daily activities. The pipeline was verified by comparing the estimated muscle activations and joint mechanics to existing experimental data. To determine the importance of the EMG-assisted MS analysis approach, results were compared to those from the same FE models but driven by static-optimization-based MS models. The EMG-assisted MS-FE pipeline bore a closer resemblance to experiments compared to the static-optimization-based MS-FE pipeline. Importantly, the developed pipeline showed great potential as a rapid MS-FE analysis toolbox to investigate multiscale knee mechanics during different activities of individuals with KOA.Peer reviewe
Reliability of functional and predictive methods to estimate the hip joint centre in human motion analysis in healthy adults.
In human motion analysis predictive or functional methods are used to estimate the location of the hip joint centre (HJC). It has been shown that the Harrington regression equations (HRE) and geometric sphere fit (GSF) method are the most accurate predictive and functional methods, respectively. To date, the comparative reliability of both approaches has not been assessed. The aims of this study were to (1) compare the reliability of the HRE and the GSF methods, (2) analyse the impact of the number of thigh markers used in the GSF method on the reliability, (3) evaluate how alterations to the movements that comprise the functional trials impact HJC estimations using the GSF method, and (4) assess the influence of the initial guess in the GSF method on the HJC estimation. Fourteen healthy adults were tested on two occasions using a three-dimensional motion capturing system. Skin surface marker positions were acquired while participants performed quite stance, perturbed and non-perturbed functional trials, and walking trials. Results showed that the HRE were more reliable in locating the HJC than the GSF method. However, comparison of inter-session hip kinematics during gait did not show any significant difference between the approaches. Different initial guesses in the GSF method did not result in significant differences in the final HJC location. The GSF method was sensitive to the functional trial performance and therefore it is important to standardize the functional trial performance to ensure a repeatable estimate of the HJC when using the GSF method
Optimised Anaesthesia to Reduce Post Operative Cognitive Decline (POCD) in Older Patients Undergoing Elective Surgery, a Randomised Controlled Trial
Background
The study determined the one year incidence of post operative cognitive decline (POCD) and evaluated the effectiveness of an intra-operative anaesthetic intervention in reducing post-operative cognitive impairment in older adults (over 60 years of age) undergoing elective orthopaedic or abdominal surgery.
Methods and Trial Design
The design was a prospective cohort study with a nested randomised, controlled intervention trial, using intra-operative BiSpectral index and cerebral oxygen saturation monitoring to enable optimisation of anaesthesia depth and cerebral oxygen saturation in older adults undergoing surgery.
Results
In the 52 week prospective cohort study (192 surgical patients and 138 controls), mild (?2 = 17.9 p<0.0001), moderate (?2 = 7.8 p = 0.005) and severe (?2 = 5.1 p = 0.02) POCD were all significantly higher after 52 weeks in the surgical patients than among the age matched controls. In the nested RCT, 81 patients were randomized, 73 contributing to the data analysis (34 intervention, 39 control). In the intervention group mild POCD was significantly reduced at 1, 12 and 52 weeks (Fisher’s Exact Test p = 0.018, ?2 = 5.1 p = 0.02 and ?2 = 5.9 p = 0.015), and moderate POCD was reduced at 1 and 52 weeks (?2 = 4.4 p = 0·037 and ?2 = 5.4 p = 0.02). In addition there was significant improvement in reaction time at all time-points (Vigilance Reaction Time MWU Z = ?2.1 p = 0.03, MWU Z = ?2.7 p = 0.004, MWU Z = ?3.0 p = 0.005), in MMSE at one and 52 weeks (MWU Z = ?2.9 p = 0.003, MWU Z = ?3.3 p = 0.001), and in executive function at 12 and 52 weeks (Trail Making MWU Z = ?2.4 p = .0.018, MWU Z = ?2.4 p = 0.019).
Conclusion
POCD is common and persistent in older adults following surgery. The results of the nested RCT indicate the potential benefits of intra-operative monitoring of anaesthetic depth and cerebral oxygenation as a pragmatic intervention to reduce post-operative cognitive impairment
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have
fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in
25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16
regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of
correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP,
while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in
Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium
(LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region.
Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant
enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the
refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa,
an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of
PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent
signals within the same regio
EEG Biofeedback as a Treatment for Substance Use Disorders: Review, Rating of Efficacy, and Recommendations for Further Research
Electroencephalographic (EEG) biofeedback has been employed in substance use disorder (SUD) over the last three decades. The SUD is a complex series of disorders with frequent comorbidities and EEG abnormalities of several types. EEG biofeedback has been employed in conjunction with other therapies and may be useful in enhancing certain outcomes of therapy. Based on published clinical studies and employing efficacy criteria adapted by the Association for Applied Psychophysiology and Biofeedback and the International Society for Neurofeedback and Research, alpha theta training—either alone for alcoholism or in combination with beta training for stimulant and mixed substance abuse and combined with residential treatment programs, is probably efficacious. Considerations of further research design taking these factors into account are discussed and descriptions of contemporary research are given
Abiraterone acetate plus prednisolone with or without enzalutamide for patients with metastatic prostate cancer starting androgen deprivation therapy: final results from two randomised phase 3 trials of the STAMPEDE platform protocol
Background:
Abiraterone acetate plus prednisolone (herein referred to as abiraterone) or enzalutamide added at the start of androgen deprivation therapy improves outcomes for patients with metastatic prostate cancer. Here, we aimed to evaluate long-term outcomes and test whether combining enzalutamide with abiraterone and androgen deprivation therapy improves survival.
Methods:
We analysed two open-label, randomised, controlled, phase 3 trials of the STAMPEDE platform protocol, with no overlapping controls, conducted at 117 sites in the UK and Switzerland. Eligible patients (no age restriction) had metastatic, histologically-confirmed prostate adenocarcinoma; a WHO performance status of 0–2; and adequate haematological, renal, and liver function. Patients were randomly assigned (1:1) using a computerised algorithm and a minimisation technique to either standard of care (androgen deprivation therapy; docetaxel 75 mg/m2 intravenously for six cycles with prednisolone 10 mg orally once per day allowed from Dec 17, 2015) or standard of care plus abiraterone acetate 1000 mg and prednisolone 5 mg (in the abiraterone trial) orally or abiraterone acetate and prednisolone plus enzalutamide 160 mg orally once a day (in the abiraterone and enzalutamide trial). Patients were stratified by centre, age, WHO performance status, type of androgen deprivation therapy, use of aspirin or non-steroidal anti-inflammatory drugs, pelvic nodal status, planned radiotherapy, and planned docetaxel use. The primary outcome was overall survival assessed in the intention-to-treat population. Safety was assessed in all patients who started treatment. A fixed-effects meta-analysis of individual patient data was used to compare differences in survival between the two trials. STAMPEDE is registered with ClinicalTrials.gov (NCT00268476) and ISRCTN (ISRCTN78818544).
Findings:
Between Nov 15, 2011, and Jan 17, 2014, 1003 patients were randomly assigned to standard of care (n=502) or standard of care plus abiraterone (n=501) in the abiraterone trial. Between July 29, 2014, and March 31, 2016, 916 patients were randomly assigned to standard of care (n=454) or standard of care plus abiraterone and enzalutamide (n=462) in the abiraterone and enzalutamide trial. Median follow-up was 96 months (IQR 86–107) in the abiraterone trial and 72 months (61–74) in the abiraterone and enzalutamide trial. In the abiraterone trial, median overall survival was 76·6 months (95% CI 67·8–86·9) in the abiraterone group versus 45·7 months (41·6–52·0) in the standard of care group (hazard ratio [HR] 0·62 [95% CI 0·53–0·73]; p<0·0001). In the abiraterone and enzalutamide trial, median overall survival was 73·1 months (61·9–81·3) in the abiraterone and enzalutamide group versus 51·8 months (45·3–59·0) in the standard of care group (HR 0·65 [0·55–0·77]; p<0·0001). We found no difference in the treatment effect between these two trials (interaction HR 1·05 [0·83–1·32]; pinteraction=0·71) or between-trial heterogeneity (I2 p=0·70). In the first 5 years of treatment, grade 3–5 toxic effects were higher when abiraterone was added to standard of care (271 [54%] of 498 vs 192 [38%] of 502 with standard of care) and the highest toxic effects were seen when abiraterone and enzalutamide were added to standard of care (302 [68%] of 445 vs 204 [45%] of 454 with standard of care). Cardiac causes were the most common cause of death due to adverse events (five [1%] with standard of care plus abiraterone and enzalutamide [two attributed to treatment] and one (<1%) with standard of care in the abiraterone trial).
Interpretation:
Enzalutamide and abiraterone should not be combined for patients with prostate cancer starting long-term androgen deprivation therapy. Clinically important improvements in survival from addition of abiraterone to androgen deprivation therapy are maintained for longer than 7 years.
Funding:
Cancer Research UK, UK Medical Research Council, Swiss Group for Clinical Cancer Research, Janssen, and Astellas
Bioinspired Technologies to Connect Musculoskeletal Mechanobiology to the Person for Training and Rehabilitation
Musculoskeletal tissues respond to optimal mechanical signals (e.g., strains) through anabolic adaptations, while mechanical signals above and below optimal levels cause tissue catabolism. If an individual's physical behavior could be altered to generate optimal mechanical signaling to musculoskeletal tissues, then targeted strengthening and/or repair would be possible. We propose new bioinspired technologies to provide real-time biofeedback of relevant mechanical signals to guide training and rehabilitation. In this review we provide a description of how wearable devices may be used in conjunction with computational rigid-body and continuum models of musculoskeletal tissues to produce real-time estimates of localized tissue stresses and strains. It is proposed that these bioinspired technologies will facilitate a new approach to physical training that promotes tissue strengthening and/or repair through optimal tissue loading
- …