39 research outputs found

    Farmer rationality and the adoption of greening practices in Poland

    Get PDF
    Common Agricultural Policy (CAP) reform in the European Union introduced a new element: greening. The aim of greening is to support the environment and create non-productive value in agriculture. The main element of greening is the Ecological Focus Area (EFA) meaning that a portion of farmland area has to be designed for environmental purposes. This article consists of an evaluatation of greening and its elements in the first year CAP reform has come into force. Surveys were used as a tool to gather information about farm characteristics, ways to meet greening requirements as well as the opinions of farmers as to changes in direct subsidies and greening obligations. The research was conducted in 2015 directly interviewing 290 farmers from the whole of Poland. The farmers interviewed lived in different parts of the country and had different size farms. Data was prepared with the use of spreadsheets and were analysed using the R statistical program and the “gmodel” and “vcd” statistical packages were used during the calculations. Polish farmers are against greening. Greening does not significantly change the way farmers run their farms. They choose the cheapest options of EFA which are usually not the best for the environment. Furthermore, farmers have to bear the cost of introducing the new elements themselves. Despite a high number of environmental and agricultural advantages offered by new farming methods, crop rotation and after-crop sowing duty, CAP reform is assessed in a negative light. As a result of negative opinions held by farmers due to the lack of subsidies, farmers may not continue greening practices in the future

    Crop rotations sustain cereal yields under a changing climate

    Get PDF
    Agriculture is facing the complex challenge of satisfying increasing food demands, despite the current and projected negative impacts of climate change on yields. Increasing crop diversity at a national scale has been suggested as an adaptive measure to better cope with negative climate impacts such as increasing temperatures and drought, but there is little evidence to support this hypothesis at the field scale. Using seven long-term experiments across a wide latitudinal gradient in Europe, we showed that growing multiple crop species in a rotation always provided higher yields for both winter and spring cereals (average +860 and +390 kg ha(-1) per year, respectively) compared with a continuous monoculture. In particular, yield gains in diverse rotations were higher in years with high temperatures and scant precipitations, i.e. conditions expected to become more frequent in the future, rendering up to c. 1000 kg ha(-1) per year compared to monocultures. Winter cereals yielded more in diverse rotations immediately after initiation of the experiment and kept this advantage constant over time. For spring cereals, the yield gain increased over time since diversification adoption, arriving to a yearly surplus of c. 500 kg ha(-1) after 50-60 years with still no sign of plateauing. Diversified rotations emerge as a promising way to adapt temperate cropping systems and contribute to food security under a changing climate. However, novel policies need to be implemented and investments made to give means and opportunities for farmers to adopt diversified crop rotations

    Crop rotations sustain cereal yields under a changing climate

    Get PDF
    Agriculture is facing the complex challenge of satisfying increasing food demands, despite the current and projected negative impacts of climate change on yields. Increasing crop diversity at a national scale has been suggested as an adaptive measure to better cope with negative climate impacts such as increasing temperatures and drought, but there is little evidence to support this hypothesis at the field scale. Using seven long-term experiments across a wide latitudinal gradient in Europe, we showed that growing multiple crop species in a rotation always provided higher yields for both winter and spring cereals (average +860 and +390 kg ha−1 per year, respectively) compared with a continuous monoculture. In particular, yield gains in diverse rotations were higher in years with high temperatures and scant precipitations, i.e. conditions expected to become more frequent in the future, rendering up to c. 1000 kg ha−1 per year compared to monocultures. Winter cereals yielded more in diverse rotations immediately after initiation of the experiment and kept this advantage constant over time. For spring cereals, the yield gain increased over time since diversification adoption, arriving to a yearly surplus of c. 500 kg ha−1 after 50-60 years with still no sign of plateauing. Diversified rotations emerge as a promising way to adapt temperate cropping systems and contribute to food security under a changing climate. However, novel policies need to be implemented and investments made to give means and opportunities for farmers to adopt diversified crop rotations

    The role of DNA damage response pathways in chromosome fragility in Fragile X syndrome

    Get PDF
    FRAXA is one of a number of fragile sites in human chromosomes that are induced by agents like fluorodeoxyuridine (FdU) that affect intracellular thymidylate levels. FRAXA coincides with a >200 CGG•CCG repeat tract in the 5′ UTR of the FMR1 gene, and alleles prone to fragility are associated with Fragile X (FX) syndrome, one of the leading genetic causes of intellectual disability. Using siRNA depletion, we show that ATR is involved in protecting the genome against FdU-induced chromosome fragility. We also show that FdU increases the number of γ-H2AX foci seen in both normal and patient cells and increases the frequency with which the FMR1 gene colocalizes with these foci in patient cells. In the presence of FdU and KU55933, an ATM inhibitor, the incidence of chromosome fragility is reduced, suggesting that ATM contributes to FdU-induced chromosome fragility. Since both ATR and ATM are involved in preventing aphidicolin-sensitive fragile sites, our data suggest that the lesions responsible for aphidicolin-induced and FdU-induced fragile sites differ. FRAXA also displays a second form of chromosome fragility in absence of FdU, which our data suggest is normally prevented by an ATM-dependent process

    The phenology of winter rye in Poland: an analysis of long-term experimental data

    Get PDF
    The study of the phenology of crops, although quite popular, has limitations, mainly because of frequent changes to crop varieties and management practices. Here, we present data on the phenology and yield of winter rye in western Poland collected between 1957 and 2012 from a long-term field experiment. Data were examined for trends through time and compared to climatological factors using regression analysis. Both annual air temperature and precipitation increased during the study period, equivalent to 2 °C and 186 mm, respectively, over the 52-year period for which met data were available. We detected significant delays in sowing date and recently in emergence, but significant advances were apparent in full flowering date equivalent to 4 days/decade. Yield and plant density experienced a step like change in 1986; yield increasing by ca. 70 % and plant density increasing by ca. 50 %, almost coinciding with a similar change in annual mean temperature, but most likely caused by a changed seed rate and use of herbicides. Future climate change is expected to have a greater impact on this crop, but farmers may be able to adapt to these changes by modifying water regimes, using new machinery and sowing new rye varieties

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    9 Pág.Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments.G.V., R.B. and S.H. acknowledge FORMAS grants 2018-02872 and 2018-02321. TMB acknowledges USDA AFRI grant 2017-67013-26254. LTEs managed by SRUC were supported by the Scottish Government RESAS Strategic Research Programme under project D3-, Healthy Soils for a Green Recovery. Swedish LTEs were funded by the Swedish University of Agricultural Sciences (SLU). We thank the Lawes Agricultural Trust and Rothamsted Research for data from the e-RA database. The Rothamsted Long-term Experiments National Capability (LTE-NC) was supported by the UK BBSRC (Biotechnology and Biological Sciences Research Council, BBS/E/C/000J0300) and the Lawes Agricultural Trust. The Woodslee site was supported by the Agro-Ecosystem Resilience Program (Agriculture & Agri-Food Canada) and field management provided by field crews over 6 decades is appreciated. La Canaleja LTE (Spain) was supported by RTA2017-00006-C03-01 project (Ministry of Science and Innovation. El Encín LTEs were supported by Spanish Ministry of Economy and Competitiveness funds (projects AGL2002-04186-C03-01.03, AGL2007-65698-C03-01.03, AGL2012-39929-C03-01 of which L. Navarrete was the P.I). R.A., A.G.D. and E.H.P. are also grateful to all members of the Weed Science Group from El Encín Experimental Station for their technical assistance in managing the experiments. The Brody/Poznan University of Life Sciences long-term experiments were funded by the Polish Ministry of Education and Science. We acknowledge the E-Obs dataset from the EU-FP6 project UERRA (http://www.uerra.eu) and the Copernicus Climate Change Service, and the data providers in the ECA&D project (https://www.ecad.eu/).Peer reviewe

    Crop rotational diversity can mitigate climate-induced grain yield losses

    Get PDF
    Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.</p

    Body dysmorphia in common skin diseases: Results of an observational, cross-sectional multi-centre study among dermatological out-patients in 17 European countries

    Get PDF
    Background Body dysmorphic disorder (BDD) is a common psychiatric disorder associated with high costs for healthcare systems as patients may repeatedly ask for different, often not effective interventions. BDD symptoms are more prevalent in patients with dermatological conditions than the general population, but there are no large sample studies comparing the prevalence of BDD symptoms between patients with dermatological conditions and healthy skin controls. Objectives To compare the prevalence of BDD symptoms between patients with different dermatological conditions and healthy skin controls and to describe sociodemographic, physical and psychological factors associated with BDD symptoms to identify patients who may have a particularly high chance of having this condition. Methods This observational cross-sectional, comparative multi-centre study included 8295 participants: 5487 consecutive patients with different skin diseases (56% female) recruited among dermatological out-patients at 22 clinics in 17 European countries and 2808 healthy skin controls (66% female). All patients were examined by a dermatologist. BDD symptoms were assessed by the Dysmorphic Concern Questionnaire (DCQ). Sociodemographic data, information on psychological factors and physical conditions were collected. Each patient was given a dermatological diagnosis according to ICD-10 by a dermatologist. Results The participation rate of invited dermatological patients was 82.4% on average across all centres. BDD symptoms were five times more prevalent in patients with dermatological conditions than in healthy skin controls (10.5% vs. 2.1%). Patients with hyperhidrosis, alopecia and vitiligo had a more than eleven-fold increased chance (adjusted Odds Ratio (OR) > 11) of having BDD symptoms compared to healthy skin controls, and patients with atopic dermatitis, psoriasis, acne, hidradenitis suppurativa, prurigo and bullous diseases had a more than six-fold increased chance (adjusted OR > 6) of having BDD symptoms. Using a logistic regression model, BDD symptoms were significantly related to lower age, female sex, higher psychological stress and feelings of stigmatisation. Conclusions This study reveals that clinical BDD symptoms are significantly associated with common dermatological diseases. As such symptoms are associated with higher levels of psychological distress and multiple unhelpful consultations, general practitioners and dermatologists should consider BDD and refer patients when identified to an appropriate service for BDD screening and management
    corecore