330 research outputs found

    Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice

    Get PDF
    BACKGROUND: Though the precise cause(s) of Alzheimer’s disease (AD) remain unknown, there is strong evidence that decreased clearance of β-amyloid (Aβ) from the brain can contribute to the disease. Therapeutic strategies to promote natural Aβ clearance mechanisms, such as the protein apolipoprotein-E (APOE), hold promise for the treatment of AD. The amount of APOE in the brain is regulated by nuclear receptors including retinoid X receptors (RXRs). Drugs that activate RXRs, including bexarotene, can increase APOE and ABCA1 production, and have been shown to decrease the Aβ burden and improve cognition in mouse models of Aβ amyloidosis. Although recent bexarotene studies failed to replicate the rapid clearance of Aβ from brains, behavioral and cognitive effects of this compound remain controversial. FINDINGS: In efforts to clarify these behavioral findings, mutant APP/PS1 mice were acutely dosed with bexarotene. While ABCA1 was upregulated in mutant APP/PS1 mice treated with bexarotene, this drug failed to attenuate Aβ plaques or cognitive deficits in these mice. CONCLUSIONS: We recommend rigorous preclinical study to evaluate the mechanism and utility of such a compound for AD therapy

    Environmental Enrichment Mitigates Cognitive Deficits in a Mouse Model of Alzheimer's Disease

    Get PDF
    Epidemiological studies suggest that individuals with greater education or more cognitively demanding occupations have diminished risk of developing dementia. We wanted to test whether this effect could be recapitulated in rodents using environmental enrichment, a paradigm well documented to attenuate behavioral deficits induced by various pathological insults. Here, we demonstrate that learning and memory deficits observed in a transgenic mouse model of Alzheimer's disease can be ameliorated by enrichment. Female transgenic mice overexpressing amyloid precursor protein and/or presenilin-1 and nontransgenic controls were placed into enriched or standard cages at 2 months of age and tested for cognitive behavior after 6 months of differential housing. Enrichment significantly improved performance of all genotypes in the radial water maze and in the classic and repeated-reversal versions of the Morris water maze. However, enrichment did not benefit all genotypes equally. Mice overproducing amyloid-β (Aβ), particularly those with amyloid deposits, showed weaker memory for the platform location in the classic Morris water maze and learned new platform positions in the repeated-reversals task less quickly than their nontransgenic cagemates. Nonetheless, enrichment normalized the performance of Aβ-overproducing mice to the level of standard-housed nontransgenic mice. Moreover, this functional preservation occurred despite increased neuritic plaque burden in the hippocampus of double-transgenic animals and elevated steady-state Aβ levels, because both endogenous and transgene-derived Aβ are increased in enriched animals. These results demonstrate that the generation of Aβ in vivo and its impact on the function of the nervous system can be strongly modulated by environmental factors

    Cannabinoid CB2 Receptors in a Mouse Model of A beta Amyloidosis: Immunohistochemical Analysis and Suitability as a PET Biomarker of Neuroinflammation

    Get PDF
    In Alzheimer\u27s disease (AD), one of the early responses to A beta amyloidosis is recruitment of microglia to areas of new plaque. Microglial receptors such as cannabinoid receptor 2 (CB2) might be a suitable target for development of PET radiotracers that could serve as imaging biomarkers of A beta-induced neuroinflammation. Mouse models of amyloidosis (J20APPswe/ind and APPswe/PS1 Delta E9) were used to investigate the cellular distribution of CB2 receptors. Specificity of CB2 antibody (H60) was confirmed using J20APPswe/ind mice lacking CB2 receptors. APPswe/PS1 Delta E9 mice were used in small animal PET with a CB2-targeting radiotracer, [C-11]A836339. These studies revealed increased binding of [C-11]A836339 in amyloid-bearing mice. Specificity of the PET signal was confirmed in a blockade study with a specific CB2 antagonist, AM630. Confocal microscopy revealed that CB2-receptor immunoreactivity was associated with astroglial (GFAP) and, predominantly, microglial (CD68) markers. CB2 receptors were observed, in particular, in microglial processes forming engulfment synapses with A beta plaques. In contrast to glial cells, neuron (NeuN)-derived CB2 signal was equal between amyloid-bearing and control mice. The pattern of neuronal CB2 staining in amyloid-bearing mice was similar to that in human cases of AD. The data collected in this study indicate that A beta amyloidosis without concomitant tau pathology is sufficient to activate CB2 receptors that are suitable as an imaging biomarker of neuroinflammation. The main source of enhanced CB2 PET binding in amyloid-bearing mice is increased CB2 immunoreactivity in activated microglia. The presence of CB2 immunoreactivity in neurons does not likely contribute to the enhanced CB2 PET signal in amyloid-bearing mice due to a lack of significant neuronal loss in this model. However, significant loss of neurons as seen at late stages of AD might decrease the CB2 PET signal due to loss of neuronally-derived CB2. Thus this study in mouse models of AD indicates that a CB2-specific radiotracer can be used as a biomarker of neuroinflammation in the early preclinical stages of AD, when no significant neuronal loss has yet developed

    Hydroxyurea Improves Spatial Memory and Cognitive Plasticity in Mice and Has a Mild Effect on These Parameters in a Down Syndrome Mouse Model

    Get PDF
    Down syndrome (DS), a genetic disorder caused by partial or complete triplication of chromosome 21, is the most common genetic cause of intellectual disability. DS mouse models and cell lines display defects in cellular adaptive stress responses including autophagy, unfolded protein response, and mitochondrial bioenergetics. We tested the ability of hydroxyurea (HU), an FDA-approved pharmacological agent that activates adaptive cellular stress response pathways, to improve the cognitive function of Ts65Dn mice. The chronic HU treatment started at a stage when early mild cognitive deficits are present in this model (∼3 months of age) and continued until a stage of advanced cognitive deficits in untreated mice (∼5–6 months of age). The HU effects on cognitive performance were analyzed using a battery of water maze tasks designed to detect changes in different types of memory with sensitivity wide enough to detect deficits as well as improvements in spatial memory. The most common characteristic of cognitive deficits observed in trisomic mice at 5–6 months of age was their inability to rapidly acquire new information for long-term storage, a feature akin to episodic-like memory. On the background of severe cognitive impairments in untreated trisomic mice, HU-treatment produced mild but significant benefits in Ts65Dn by improving memory acquisition and short-term retention of spatial information. In control mice, HU treatment facilitated memory retention in constant (reference memory) as well as time-variant conditions (episodic-like memory) implicating a robust nootropic effect. This was the first proof-of-concept study of HU treatment in a DS model, and indicates that further studies are warranted to assess a window to optimize timing and dosage of the treatment in this pre-clinical phase. Findings of this study indicate that HU has potential for improving memory retention and cognitive flexibility that can be harnessed for the amelioration of cognitive deficits in normal aging and in cognitive decline (dementia) related to DS and other neurodegenerative diseases

    Persistent Amyloidosis following Suppression of Aβ Production in a Transgenic Model of Alzheimer Disease

    Get PDF
    BACKGROUND: The proteases (secretases) that cleave amyloid-β (Aβ) peptide from the amyloid precursor protein (APP) have been the focus of considerable investigation in the development of treatments for Alzheimer disease. The prediction has been that reducing Aβ production in the brain, even after the onset of clinical symptoms and the development of associated pathology, will facilitate the repair of damaged tissue and removal of amyloid lesions. However, no long-term studies using animal models of amyloid pathology have yet been performed to test this hypothesis. METHODS AND FINDINGS: We have generated a transgenic mouse model that genetically mimics the arrest of Aβ production expected from treatment with secretase inhibitors. These mice overexpress mutant APP from a vector that can be regulated by doxycycline. Under normal conditions, high-level expression of APP quickly induces fulminant amyloid pathology. We show that doxycycline administration inhibits transgenic APP expression by greater than 95% and reduces Aβ production to levels found in nontransgenic mice. Suppression of transgenic Aβ synthesis in this model abruptly halts the progression of amyloid pathology. However, formation and disaggregation of amyloid deposits appear to be in disequilibrium as the plaques require far longer to disperse than to assemble. Mice in which APP synthesis was suppressed for as long as 6 mo after the formation of Aβ deposits retain a considerable amyloid load, with little sign of active clearance. CONCLUSION: This study demonstrates that amyloid lesions in transgenic mice are highly stable structures in vivo that are slow to disaggregate. Our findings suggest that arresting Aβ production in patients with Alzheimer disease should halt the progression of pathology, but that early treatment may be imperative, as it appears that amyloid deposits, once formed, will require additional intervention to clear

    Altered longevity-assurance activity of p53:p44 in the mouse causes memory loss, neurodegeneration and premature death

    Get PDF
    The longevity-assurance activity of the tumor suppressor p53 depends on the levels of Δ40p53 (p44), a short and naturally occurring isoform of the p53 gene. As such, increased dosage of p44 in the mouse leads to accelerated aging and short lifespan. Here we show that mice homozygous for a transgene encoding p44 (p44+/+) display cognitive decline and synaptic impairment early in life. The synaptic deficits are attributed to hyperactivation of insulin-like growth factor 1 receptor (IGF-1R) signaling and altered metabolism of the microtubule-binding protein tau. In fact, they were rescued by either Igf1r or Mapt haploinsufficiency. When expressing a human or a ‘humanized’ form of the amyloid precursor protein (APP), p44+/+ animals developed a selective degeneration of memory-forming and -retrieving areas of the brain, and died prematurely. Mechanistically, the neurodegeneration was caused by both paraptosis- and autophagy-like cell deaths. These results indicate that altered longevity-assurance activity of p53:p44 causes memory loss and neurodegeneration by affecting IGF-1R signaling. Importantly, Igf1r haploinsufficiency was also able to correct the synaptic deficits of APP695/swe mice, a model of Alzheimer’s disease

    Changes in elderly women's health-related quality of life following discontinuation of hormone replacement therapy

    Get PDF
    BACKGROUND: Many women have discontinued hormone replacement therapy (HRT) in view of recent findings. The goal of this study was to determine if HRT discontinuation is associated with changes in health-related quality of life (HRQOL) in elderly women. METHODS: We studied women enrolled in Pennsylvania's Pharmaceutical Assistance Contract for the Elderly (PACE) program, linking prescription claims with data from a longitudinal mail survey. HRQOL measures included the number of days out of the last 30 that physical health was not good and analogous measures for mental health, pain, and interference with activities, as well as a composite "healthy days" measure developed by CDC. Longitudinal analyses focused on 2,357 women who completed surveys in both 2002 and 2003, and who used HRT at baseline (mean age = 75.5, range = 65–102). Propensity scores were used to match HRT continuers and discontinuers according to HRT type, demographics, and baseline HRQOL. Analysis of covariance was used to compare HRQOL change in continuers and discontinuers. RESULTS: Between 2002 and 2003, 43% of HRT users discontinued therapy. Analysis of covariance to examine HRQOL change revealed complex interactions with age. Discontinuers aged 65–74 reported greater increases in days in which mental health was not good (p < .05), fewer "healthy days" (p < .05), more days in which health interfered with activities (p < .01), and more days with pain (p < .01). Among women aged 75–84, HRT discontinuers reported more days in which physical health was not good (p < .01); no other significant effects were observed in this group. Relative to HRT continuers, discontinuers aged 85 and older experienced apparent HRQOL improvements following cessation, with fewer days in which physical health was not good (p < .01), fewer days of poor mental health (p < .05), and more "healthy days" (p < .01). CONCLUSIONS: These results suggest that there are substantial age differences in response to HRT discontinuation. While women aged 65–74 experienced apparent declines in HRQOL following HRT cessation, women aged 85 and older experienced relative improvements. The HRQOL declines observed among younger women underscore the importance of communication between clinicians and patients throughout the discontinuation process. These results also demonstrate the value of HRQOL surveillance as a component of health program administration

    Receptor-Associated Protein (RAP) Plays a Central Role in Modulating Aβ Deposition in APP/PS1 Transgenic Mice

    Get PDF
    BACKGROUND: Receptor associated protein (RAP) functions in the endoplasmic reticulum (ER) to assist in the maturation of several membrane receptor proteins, including low density lipoprotein receptor-related protein (LRP) and lipoprotein receptor 11 (SorLA/LR11). Previous studies in cell and mouse model systems have demonstrated that these proteins play roles in the metabolism of the amyloid precursor protein (APP), including processes involved in the generation, catabolism and deposition of beta-amyloid (Abeta) peptides. METHODOLOGY/PRINCIPAL FINDINGS: Mice transgenic for mutant APPswe and mutant presenilin 1 (PS1dE9) were mated to mice with homozygous deletion of RAP. Unexpectedly, mice that were homozygous null for RAP and transgenic for APPswe/PS1dE9 showed high post-natal mortality, necessitating a shift in focus to examine the levels of amyloid deposition in APPswe/PS1dE9 that were hemizygous null for RAP. Immunoblot analysis confirmed 50% reductions in the levels of RAP with modest reductions in the levels of proteins dependent upon RAP for maturation [LRP trend towards a 20% reduction ; SorLA/LR11 statistically significant 15% reduction (p<0.05)]. Changes in the levels of these proteins in the brains of [APPswe/PS1dE9](+/-)/RAP(+/-) mice correlated with 30-40% increases in amyloid deposition by 9 months of age. CONCLUSIONS/SIGNIFICANCE: Partial reductions in the ER chaperone RAP enhance amyloid deposition in the APPswe/PS1dE9 model of Alzheimer amyloidosis. Partial reductions in RAP also affect the maturation of LRP and SorLA/LR11, which are each involved in several different aspects of APP processing and Abeta catabolism. Together, these findings suggest a central role for RAP in Alzheimer amyloidogenesis

    GABAA Receptor-Mediated Acceleration of Aging-Associated Memory Decline in APP/PS1 Mice and Its Pharmacological Treatment by Picrotoxin

    Get PDF
    Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9–15 months) transgenic APP/PS1 mice and old (19–25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABAA receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABAA receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABAA receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABAA receptor α1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABAA receptor α1 subunit and improvement of cognitive functions by long term GABAA receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABAA receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Aβ and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice

    Increased Expression of PS1 Is Sufficient to Elevate the Level and Activity of γ-Secretase In Vivo

    Get PDF
    Increase in the generation and deposition of amyloid-β (Aβ) plays a central role in the development of Alzheimer's Disease (AD). Elevation of the activity of γ-secretase, a key enzyme required for the generation for Aβ, can thus be a potential risk factor in AD. However, it is not known whether γ-secretase can be upregulated in vivo. While in vitro studies showed that expression of all four components of γ-secretase (Nicastrin, Presenilin, Pen-2 and Aph-1) are required for upregulation of γ-secretase, it remains to be established as to whether this is true in vivo. To investigate whether overexpressing a single component of the γ-secretase complex is sufficient to elevate its level and activity in the brain, we analyzed transgenic mice expressing either wild type or familial AD (fAD) associated mutant PS1. In contrast to cell culture studies, overexpression of either wild type or mutant PS1 is sufficient to increase levels of Nicastrin and Pen-2, and elevate the level of active γ-secretase complex, enzymatic activity of γ-secretase and the deposition of Aβ in brains of mice. Importantly, γ-secretase comprised of mutant PS1 is less active than that of wild type PS1-containing γ-secretase; however, γ-secretase comprised of mutant PS1 cleaves at the Aβ42 site of APP-CTFs more efficiently than at the Aβ40 site, resulting in greater accumulation of Aβ deposits in the brain. Our data suggest that whereas fAD-linked PS1 mutants cause early onset disease, upregulation of PS1/γ-secretase activity may be a risk factor for late onset sporadic AD
    corecore