890 research outputs found

    Orthogonal Projections Based on Hyperbolic and Spherical n-Simplex

    Full text link
    In this paper, orthogonal projection along a geodesic to the chosen k-plane is introduced using edge and Gram matrix of an n-simplex in hyperbolic or spherical n-space. The distance from a point to k-plane is obtained by the orthogonal projection. It is also given the perpendicular foots from a point to k-plane of hyperbolic and spherical n-space.Comment: 13 page

    Low velocity quantum reflection of Bose-Einstein condensates

    Full text link
    We studied quantum reflection of Bose-Einstein condensates at normal incidence on a square array of silicon pillars. For incident velocities of 2.5-26 mm/s observations agreed with theoretical predictions that the Casimir-Polder potential of a reduced density surface would reflect slow atoms with much higher probability. At low velocities (0.5-2.5 mm/s), we observed that the reflection probability saturated around 60% rather than increasing towards unity. We present a simple model which explains this reduced reflectivity as resulting from the combined effects of the Casimir-Polder plus mean field potential and predicts the observed saturation. Furthermore, at low incident velocities, the reflected condensates show collective excitations.Comment: 4 figure

    Neutrino Spectral Split in the Exact Many Body Formalism

    Full text link
    We consider the many-body system of neutrinos interacting with each other through neutral current weak force. Emerging many-body effects in such a system could play important roles in some astrophysical sites such as the core collapse supernovae. In the literature this many-body system is usually treated within the mean field approximation which is an effective one-body description based on omitting entangled neutrino states. In this paper, we consider the original many-body system in an effective two flavor mixing scenario under the single angle approximation and present a solution without using the mean field approximation. Our solution is formulated around a special class of many-body eigenstates which do not undergo any level crossings as the neutrino self interaction rate decreases while the neutrinos radiate from the supernova. In particular, an initial state which consists of electron neutrinos and antineutrinos of an orthogonal flavor can be entirely decomposed in terms of those eigenstates. Assuming that the conditions are perfectly adiabatic so that the evolution of these eigenstates follow their variation with the interaction rate, we show that this initial state develops a spectral split at exactly the same energy predicted by the mean field formulation.Comment: Published version. 30 pages, 11 figure

    Black Holes at the LHC

    Get PDF
    If the scale of quantum gravity is near a TeV, the LHC will be producing one black hole (BH) about every second. The BH decays into prompt, hard photons and charged leptons is a clean signature with low background. The absence of significant missing energy allows the reconstruction of the mass of the decaying BH. The correlation between the BH mass and its temperature, deduced from the energy spectrum of the decay products, can test experimentally the higher dimensional Hawking evaporation law. It can also determine the number of large new dimensions and the scale of quantum gravity.Comment: 5 pages, 3 figures, submitted to PRL. Results presented at the Les Houches Workshop "Physics at the TeV Colliders" (May 30, 2001) and the "Avatars of M-Theory" conference, ITP at Santa Barbara (June 7, 2001), http://online.itp.ucsb.edu/online/mtheory_c01/dimopoulo

    Proteomic analyses reveal misregulation of LIN28 expression and delayed timing of glial differentiation in human iPS cells with MECP2 loss-of-function.

    Get PDF
    Rett syndrome (RTT) is a pervasive developmental disorder caused by mutations in MECP2. Complete loss of MECP2 function in males causes congenital encephalopathy, neurodevelopmental arrest, and early lethality. Induced pluripotent stem cell (iPSC) lines from male patients harboring mutations in MECP2, along with control lines from their unaffected fathers, give us an opportunity to identify some of the earliest cellular and molecular changes associated with MECP2 loss-of-function (LOF). We differentiated iPSC-derived neural progenitor cells (NPCs) using retinoic acid (RA) and found that astrocyte differentiation is perturbed in iPSC lines derived from two different patients. Using highly stringent quantitative proteomic analyses, we found that LIN28, a gene important for cell fate regulation and developmental timing, is upregulated in mutant NPCs compared to WT controls. Overexpression of LIN28 protein in control NPCs suppressed astrocyte differentiation and reduced neuronal synapse density, whereas downregulation of LIN28 expression in mutant NPCs partially rescued this synaptic deficiency. These results indicate that the pathophysiology of RTT may be caused in part by misregulation of developmental timing in neural progenitors, and the subsequent consequences of this disruption on neuronal and glial differentiation

    Direct observation of optically induced transient structures in graphite using ultrafast electron crystallography

    Full text link
    We use ultrafast electron crystallography to study structural changes induced in graphite by a femtosecond laser pulse. At moderate fluences of ~< 21mJ/cm^2, lattice vibrations are observed to thermalize on a time scale of ~8ps. At higher fluences approaching the damage threshold, lattice vibration amplitudes saturate. Following a marked initial contraction, graphite is driven nonthermally into a transient state with sp^3-like character, forming interlayer bonds. Using ab initio density functional calculations, we trace the governing mechanism back to electronic structure changes following the photo-excitation.Comment: 5 pages, 4 figures; to appear in Phys. Rev. Let
    corecore