arXiv:hep-ph/0106295 27 Jun 2001

 assuming that extra dimensions are large $\left(>R_{S}\right)$. $\sqrt{\hat{s}}=$
 Production: The Schwarzschild radius R_{S} of an $(4+$
n)-dimensional black hole is given by [5]: black holes.

 дтuix
 чұоq 'sкеәәр НЯ јо әлпұеи (ұиәриәСәри! лолеも) ،э!ұелэ

 about every second. The BH decays into prompt, hard photons and charged leptons is a clean If the scale of quantum gravity is near a TeV , the LHC will be producing one black hole (BH) Physics Department, Stanford University, Stanford, CA 94305-4060, USA
b Department of Physics, Brown University, Providence, RI 02912, USA

 se 'so!s
 over 10^{7} black holes per year. This is comparable to the
 for $M_{P}=2 \mathrm{TeV}, n=7$ to 120 fb for $M_{P}=6 \mathrm{TeV}$ and
 produced at the LHC is shown in Fig. 1b for severa

 The dependence of the cross section on the choice of PDF
is $\sim 10 \%$, i.e. satisfactory for the purpose of this esti-
 рәмо[[е әчł и!чд!м s! чэ!чм 'ня $/ N$ of [enbә әq of uәye7

where the parton luminosity $d L / d M_{\mathrm{BH}}$ is defined as the
sum over all the initial parton types: $\left.\frac{d L}{d M_{\mathrm{BH}}} \hat{\sigma}(a b \rightarrow \mathrm{BH})\right|_{\hat{s}=M_{\mathrm{BH}}^{2}}$ tion using the parton luminosity approach (after Ref. [7]):

 This expression contains no small coupling constants;
if the parton c.o.m. energy $\sqrt{\hat{s}}$ reaches the fundamental -

Introduction Ander
PACS numbers: $04.70,04.50,14.80 .-\mathrm{j}$
Introduction Ander
> r

FIG. 1: a) Parton-level production cross section, b) differential cross section $d \sigma / d M_{\mathrm{BH}}$ at the LHC, c) Hawking temperature, and d) average decay multiplicity for a Schwarzschild black hole. The number of extra spatial dimensions $n=4$ is used for a)-c). The dependence of the cross section and Hawking temperature on n is weak and would be hardly noticable on the logarithmic scale.
radius, and given by [5]:

$$
\begin{equation*}
T_{H}=M_{P}\left(\frac{M_{P}}{M_{\mathrm{BH}}} \frac{n+2}{8 \Gamma\left(\frac{n+3}{2}\right)}\right)^{\frac{1}{n+1}} \frac{n+1}{4 \sqrt{\pi}} \tag{3}
\end{equation*}
$$

(see Fig. 1b). As the parton collision energy increases, the resulting black hole gets heavier and its decay products get colder.

Note that the wavelength $\lambda=\frac{2 \pi}{T_{H}}$ corresponding to the Hawking temperature is larger than the size of the black hole. Therefore, the BH is, to first approximation, a point-radiator and therefore emits mostly s-waves. This indicates that it decays equally to a particle on the brane and in the bulk, since it is only sensitive to the radial coordinate and does not make use of the extra angular modes available in the bulk. Since there are many more particles on our brane than he bulk, this has the crucial consequence that the black hole decays visibly to standard model (SM) particles [4, 9].

The average multiplicity of particles produced in the process of BH evaporation is given by: $\langle N\rangle=\left\langle\frac{M_{\mathrm{BH}}}{E}\right\rangle$, where E is the energy spectrum of the decay products. In order to find $\langle N\rangle$, we note that the BH evaporation is a blackbody radiation process, with the energy flux per unit of time given by Planck's formula: $\frac{d f}{d x} \sim \frac{x^{3}}{e^{x} \pm c}$, where $x \equiv E / T_{H}$, and c is a constant, which depends on the quantum statistics of the decay products $(c=-1$ for bosons, +1 for fermions, and 0 for Boltzmann statistics).

The spectrum of the BH decay products in the massless particle approximation is given by: $\frac{d N}{d E} \sim \frac{1}{E} \frac{d f}{d E} \sim \frac{x^{2}}{e^{x} \pm c}$. In order to calculate the average multiplicity of the particles produced in the BH decay, we use the average of the distribution in the inverse particle energy:

$$
\begin{equation*}
\left\langle\frac{1}{E}\right\rangle=\frac{1}{T_{H}} \frac{\int_{0}^{\infty} d x \frac{1}{x} \frac{x^{2}}{e^{x} \pm c}}{\int_{0}^{\infty} d x \frac{x^{2}}{e^{x} \pm c}}=a / T_{H} \tag{4}
\end{equation*}
$$

where a is a dimensionless constant that depends on the type of produced particles and numerically equals 0.68 for bosons, 0.46 for fermions, and $\frac{1}{2}$ for Boltzmann statistics. Since a mixture of fermions and bosons is produced in the BH decay, we can approximate the average by using Boltzmann statistics, which gives the following formula for the average multiplicity: $\langle N\rangle \approx \frac{M_{\mathrm{BH}}}{2 T_{H}}$. Using Eq. (3) for Hawking temperature, we obtain:

$$
\begin{equation*}
\bar{L}|N\rangle=\frac{2 \sqrt{\pi}}{n+1}\left(\frac{M_{\mathrm{BH}}}{M_{P}}\right)^{\frac{n+2}{n+1}}\left(\frac{8 \Gamma\left(\frac{n+3}{2}\right)}{n+2}\right)^{\frac{1}{n+1}} . \tag{5}
\end{equation*}
$$

Eq. (5) is reliable when the mass of the BH is much larger than the Hawking temperature, i.e. $\langle N\rangle \gg 1$; otherwise, the Planck spectrum is truncated at $E \approx M_{\mathrm{BH}} / 2$ by the decay' kinematics [10]. The average number of particles produced in the process of BH evaporation is shown in Fig. 1d, as a function of M_{BH} / M_{P}, for several values of n.

We emphasize that, throughout this paper, we ignore time evolution: as the BH decays, it gets lighter and hotter and its decay accelerates. We adopt the "sudden approximation" in which the BH decays, at its original temperature, into its decay products. This approximation should be reliable as the BH spends most of its time near its original mass and temperature, because that is when it evolves the slowest; furthermore, that is also when it emits the most particles. Later, when we test the Hawking mass-temperature relation by reconstructing Wien's dispacement law, we will minimize the sensitivity to the late and hot stages of the BHs life by looking at only the soft part of the decay spectrum. Proper treatment of time evolution, for $M_{\mathrm{BH}} \approx M_{P}$, is difficult, since it immediately takes us to the stringy regime.

Branching Fractions: The decay of a BH is thermal: it obeys all local conservation laws, but otherwise does not discriminate between particle species (of the same mass and spin). Theories with quantum gravity near a TeV must have additional symmetries, beyond the standard $S U(3) \times S U(2) \times U(1)$, to guarantee proton longevity, approximate lepton number(s) and flavor conservation [11]. There are many possibilities: discrete or continuous symmetries, four dimensional or higher dimensional "bulk" symmetries [12]. Each of these possible symmetries constrains the decays of the black holes. Since the typical decay involves a large number of particles, we will ignore the constraints imposed by the few conservation laws and assume that the BH decays with roughly equal probability to all off ≈ 60 particles of the

 much higher background than inclusive electron or pho-τ-lepton decay modes, as the final states with τ 's have
 magnetic field, and thus the resolution deteriorates fast momenta are determined by the track curvature in the cess of BH evaparation. We do not use muons, as their excellent even at the highest energies achieved in the prothe energy resolution for electrons and photons remains reason is twofold: final states with energetic electrons
and photons have very low background at high $\sqrt{\hat{s}}$, and
 BH . Second, we will use only photons and electrons in the effects, and is expected to be $\sim 100 \mathrm{GeV}$ for a massive large jet activity, the M_{BH} resolution will be dominated
by the jet energy resolution and the initial state radiation preciably from this requirement. Since BH decays have
large jet activity, the M_{BH} resolution will be dominated
 zero. Given the small probability for a BH to emit a tion we will use only the events with \ddot{H}_{T} consistent with that we will use to carry out the numerical test. First
of all, to improve precision of the BH mass reconstruc-
 BH , and not from some other new physics

 products to the Planck's formula. Simultaneous knowltemperature by fitting the energy spectrum of the decay
products to the Planck's formula. Simultaneous knowlallows us to precisely estimate the BH mass from the
visible decay products. We can also reconstruct the BH average missing transverse energy (\mathbb{H}_{T}) per event, which
allows us to precisely estimate the BH mass from the
 Test of the Hawking's radiation: Furthermore since they contain at least one prompt lepton or photon
with the energy above 100 GeV , as well as energetic jets. tion (see Fig. 2). These events are also easy to trigger on,
since they contain at least one prompt lepton or photon SM leptons ${ }_{\mathbf{I}}$ pr photons in high-multiplicity events at the
LHC occurs at a much smaller rate than the BH producSM leptons_(1) photons in high-multiplicity events at the
 tons and $\sim 2 \%$ of the particles to be hard photons, each SM. Since there are six charged leptons and one photon,
we expect $\sim 10 \%$ of the particles to be hard, primary lep-

 a straight-line fit to the $\log \left(T_{H}\right)$ vs. $\log \left(M_{\mathrm{BH}}\right)$ data offers
a direct way of determining the dimensionality of space. only on M_{P} and on detailed properties of the bulk space,
such as shape of extra dimensions. Therefore, the slope of where the constant does not depend on the BH mass, but
only on M_{P} and on detailed properties of the bulk space,

[^0] $:(\mathrm{\&}) \cdot$ b't Jo $^{\text {J }}$

 the particle spin), below the kinematic cutoff $\left(M_{\mathrm{BH}} / 2\right)$.
We then use the measured M_{BH} vs. T_{H} dependence

 To determine the Hawking temperature in each M_{BH}
 grated luminosity is shown in Fig. 2 for severaL values of
M_{P} and n. Backgrounds from the SM $Z(e e)+$ jets and

 smear the energies of the decay products with the reso$1 \mathrm{TeV})$ and mutiplicity of the final state $(N \geq 4)$, which
contain electrons or photons with energy $>100 \mathrm{GeV}$. We

 (from inclusive $Z(e e)$ and direct photon production). The
dotted line corresponds to the $Z(\epsilon e)+X$ background alone.

FIG. 3: Determination of the dimensionality of space via Wien's displacement law at the LHC with $100 \mathrm{fb}^{-1}$ of data.

TABLE I: Determination of M_{P} and n from Hawking's radiation. The two numbers in each column correspond to fractional uncertainty in M_{P} and absolute uncertainty in n, respectively.

M_{P}	1 TeV	2 TeV	3 TeV	4 TeV	5 TeV
$n=2$	$1 \% / 0.01$	$1 \% / 0.02$	$3.3 \% / 0.10$	$16 \% / 0.35$	$40 \% / 0.46$
$n=3$	$1 \% / 0.01$	$1.4 \% / 0.06$	$7.5 \% / 0.22$	$30 \% / 1.0$	$48 \% / 1.2$
$n=4$	$1 \% / 0.01$	$2.3 \% / 0.13$	$9.5 \% / 0.34$	$35 \% / 1.5$	$54 \% / 2.0$
$n=5$	$1 \% / 0.02$	$3.2 \% / 0.23$	$17 \% / 1.1$		
$n=6$	$1 \% / 0.03$	$4.2 \% / 0.34$	$23 \% / 2.5$	Fit fails	
$n=7$	$1 \% / 0.07$	$4.5 \% / 0.40$	$24 \% / 3.8$		

with large extra dimensions.
Test of the Wien's law at the LHC would provide a confirmation that the observed $e+X$ and $\gamma+X$ event excess is due tq_t the BH production. It would also be the first experimental test of the Hawking's radiation hypothesis. Figure 3 shows typical fits to the simulated BH data at the LHC , corresponding to $100 \mathrm{fb}^{-1}$ of integrated luminosity, for the highest fundamental Planck scales that still allow for determination of the dimensionality of space with reasonable precision. The reach of the LHC for the fundamental Planck scale ahdi the number of extra dimensions via Hawking's radiation extends to $M_{P} \sim 5 \mathrm{TeV}$ and is summarized in Table [14].

Note, that the BH discovery potential at the LHE is maximized in the $e / \mu+X$ channels, where background is much smaller than that in the $\gamma+X$ channel (see Fig. 2). The reach of a simple counting experiment extends up to $M_{P} \approx 9 \mathrm{TeV}(n=2-7)$, where one would expect to see a handful of BH events with negligible background.

Summary: Black hole production at the LHC may be one of the early signatures of Te V -scale quantum gravity. It has three advantages:

Large Cross Section. Because no small dimensionless coupling constants, analogous to α, suppress the production of BHs. This leads to enormous rates.

Hard, Prompt, Charged Leptons and Photons. Because thermal decays are flavor-blind. This signature has practically vanishing SM background.

Little Missing Energy. This facilitates the deter-
mination of the mass and the temperature of the black hole, and may lead to a test of Hawking's radiation.

It is desirable to improve our primitive estimates, especially for the light black holes $\left(M_{\mathrm{BH}} \sim M_{P}\right)$; this will involve string theory. Nevertheless, the most telling signatures of BH production - large and growing cross sections; hard leptons, photons, and jets - emerge from qualitative features that are expected to be reliably estimated from the semiclassical arguments of this paper.

Perhaps black holes will be the first signal of TeV-scale quantum gravity. This depends on, among other factors, the relative magnitude of M_{P} and the (smaller) string scale M_{S}. For $M_{S} \ll M_{P}$, the vibrational modes of the string maybe the first indication of the new physics.

Note added: After the completion of this work, a related paper [15] has appeared in the LANL archives.

Acknowledgments: We would like to thank Gia Dvali, Veronika Hubeny, Nemanja Kaloper, Elias Kiritsis, Konstantin Matchev, and Lenny Susskind for valuable conversations, and many of the participants of the "Physics at TeV Colliders" and "Avatars of M-Theory" workshops for their interest.

* Results presented at the Les Houches Workshop "Physics at the TeV Colliders" (May 30, 2001) and the "Avatars of M-Theory" conference, ITP at Santa Barbara (June 7, 2001), http://online.itp.ucsb.edu/online/mtheorys01/dimopoulos.
[1] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998); N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Rev. D 59, 086004, (f-999):-----।
[2] P.C. Argyres, S. Dimopoulos, -and- I.I' March-Russell, Phys. Lett. B441, $96-(4998) .---$ -
[3] T. Banks and W. Fischler, heep-tb -4906038 .
[4] R. Emparan, G.T. Horowitz, and R.C. Myers, Phys. Rev. Lett. 85, 499 (2000) [hep-th/0003118].
[5] R.C. Myers and' M.J. Perry, Ann. Phys. 172, 304 (1986).
[6] In fact the cross section is somewhat enhanced by initialstate attraction [4].
[7] V.D. Barger and R.J.N. Phillips, "Collider Physics, Updated Edition," Addison-Wesley, 1997, p. 157.
[8] A.D. Martin, R.G. Roberts, and W.J. Stirling, preprint RAL-92-078 (1992).
[9] L. Susskind, private communication.
[10] To avoid this limitation when performing numerical tests of Wien's law, we truncate the integrals in Eq. (4) at the kinematic limit ($M_{\mathrm{BH}} / 2$).
[11] Any form of new physics at a TeV - requires- surch-new symmetries. An example, for TeV -scale-supersymmetry, is R -parity.
[12] N. Arkani-Hamed and S. Dimopoulos, hep-ph/9811353.
[13] T. Sjöstrand, Comp. Phys. Comm. 82, 74 (1994).
[14] We checked the effect of introducing an additional cutoff at $E<M_{S}$, where string dynamics is expected to affect the shape of the P1arck-spectrım, by taking $M_{S}=M_{P} / 2$. As a result, the-uncertainties-if M_{P} and n increased by about a factor of 2 .
[15] S.B. Giddings and S. Thomas, hep-ph/0106219, v2.

[^0]:

