5,495 research outputs found

    Performance of a deterministic source of entangled photonic qubits

    Get PDF
    We study the possible limitations and sources of decoherence in the scheme for the deterministic generation of polarization-entangled photons, recently proposed by Gheri et al. [K. M. Gheri et al., Phys. Rev. A 58, R2627 (1998)], based on an appropriately driven single atom trapped within an optical cavity. We consider in particular the effects of laser intensity fluctuations, photon losses, and atomic motion.Comment: 10 pages, 6 figure

    Validation of a predictive method for an accurate assessment of resting energy expenditure in medical mechanically ventilated patients

    Get PDF
    Objective: Use comparison with indirect calorimetry to confirm the ability of our previously described equation to predict resting energy expenditure in mechanically ventilated patients.Design: Prospective, validation study. Setting: Eighteen-bed, medical intensive care unit at a teaching hospital. Patients: All adult patients intubated >24 hrs were assessed for eligibility. Exclusion criteria were clinical situations that could contribute to erroneous calorimetric measurements. Interventions: Resting energy expenditure was calculated using the original Harris-Benedict equations and those corrected for usual stress factors, the Swinamer equation, the Fusco equation, the Ireton-Jones equation, and our equation: resting energy expenditure (kcal/day) = 8 × weight (kg) + 14 × height (cm) + 32 × minute ventilation (L/min) + 94 × temperature (°C) − 4834. Measurements and Main Results: Resting energy expenditure was measured by indirect calorimetry for the 45 included patients. Resting energy expenditure calculated with our predictive model correlated with the measured resting energy expenditure (r2 = .62, p < .0001), and Bland-Altman analysis showed a mean bias of −192 ± 277 kcal/day, with limits of agreement ranging from −735 to 351 kcal/day. Resting energy expenditure calculated with the Harris-Benedict equations was more weakly correlated with measured resting energy expenditure (r2 = .41, p < .0001), with Bland-Altman analysis showing a mean bias of 279 ± 346 kcal/day between them and the limits of agreement ranging from −399 to 957 kcal/day. Applying usual stress-correction factors to the Harris-Benedict equations generated wide variability, and the correlation with measured resting energy expenditure was poorer (r2 = .18, p < .0001), with Bland-Altman analysis showing a mean bias of −357 ± 750 kcal/day and limits of agreement ranging from −1827 to 1113 kcal/day. The use of the Swinamer, Fusco, or Ireton-Jones predictive methods yielded weaker correlation between calculated and measured resting energy expenditure (r2 = .41, p < .0001; r2 = .38, p < .0001; r2 = .39, p < .0001, respectively) than our equation, and Bland-Altman analysis showed no improvement in agreement and variability between methods. Conclusions: The Faisy equation, based on static (height), less stable (weight), and dynamic biometric variables (temperature and minute ventilation), provided precise and unbiased resting energy expenditure estimations in mechanically ventilated patients

    Position-sensitive ion detection in precision Penning trap mass spectrometry

    Get PDF
    A commercial, position-sensitive ion detector was used for the first time for the time-of-flight ion-cyclotron resonance detection technique in Penning trap mass spectrometry. In this work, the characteristics of the detector and its implementation in a Penning trap mass spectrometer will be presented. In addition, simulations and experimental studies concerning the observation of ions ejected from a Penning trap are described. This will allow for a precise monitoring of the state of ion motion in the trap.Comment: 20 pages, 13 figure

    Fast shower simulation in the ATLAS calorimeter

    Get PDF
    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ~1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper

    Thoracic Gas Volume in Athletes and Non-Athletes

    Get PDF
    The purpose of this study was to analyze the predicted thoracic gas volume versus measured thoracic gas volume in college students, comparing NCAA collegiate athletes versus non-athletes using the Bod Pod. Forty-four college students, both males and females, athletes and non-athletes, completed a body composition test to obtain the predicted thoracic gas volume. The participants were then instructed by the Bod Pod software through the measured thoracic gas volume test. Due to low statistical power, athletes and non-athletes were unable to be compared, however, results of a two sample t-test showed that there was a statistically significant difference between measured thoracic gas volume and predicted thoracic gas volume within the population as a whole. The average predicted thoracic gas volume was 3.66 liters ± 0.103 while the measured thoracic gas volume was 4.02 liters ± 0.165. The significance level for the test was p ≤ 0.05 and the p-value obtained from the statistical analysis was p ≤ 0.001. It was concluded that within this study, there was a significant difference between the predicted and measured thoracic gas volumes of the population

    Invasive North American bullfrogs transmit lethal fungus Batrachochytrium dendrobatidis infections to native amphibian host species

    Get PDF
    Invasive species can be a threat to native species in several ways, including transmitting lethal infections caused by the parasites they carry. However, invasive species may also be plagued by novel and lethal infections they acquire when invading, making inferences regarding the ability of an invasive host to vector disease difficult from field observations of infection and disease. This is the case for the pathogenic fungus Batrachochytrium dendrobatidis (Bd) in Europe and one invasive host species, the North American bullfrog Lithobates catesbeianus, hypothesized to be responsible for vectoring lethal infection to European native amphibians. We tested this hypothesis experimentally using the alpine newt Ichthyosaura alpestris as our model native host. Our results show that infected bullfrog tadpoles are effective vectors of Bd. Native adult newts co-housed with experimentally infected bullfrog tadpoles became Bd infected (molecular and histological tests). Moreover, the exposed adult newts suffered mortality while the majority of infected bullfrog tadpoles survived until metamorphosis. Invasive species can be a threat to native species in several ways, including transmitting lethal infections caused by the parasites they carry. However, invasive species may also be plagued by novel and lethal infections they acquire when invading, making inferences regarding the ability of an invasive host to vector disease difficult from field observations of infection and disease. This is the case for the pathogenic fungus Batrachochytrium dendrobatidis (Bd) in Europe and one invasive host species, the North American bullfrog Lithobates catesbeianus, hypothesized to be responsible for vectoring lethal infection to European native amphibians. We tested this hypothesis experimentally using the alpine newt Ichthyosaura alpestris as our model native host. Our results show that infected bullfrog tadpoles are effective vectors of Bd. Native adult newts co-housed with experimentally infected bullfrog tadpoles became Bd infected (molecular and histological tests). Moreover, the exposed adult newts suffered mortality while the majority of infected bullfrog tadpoles survived until metamorphosis. These results cannot resolve the historical role of alien species in establishing the distribution of Bd across Europe or other regions in the world where this species was introduced, but they show its potential role as a Bd reservoir capable of transmitting lethal infections to native amphibians. Finally, our results also suggest that the removal of infected bullfrogs from aquatic environments may serve to reduce the availability of Bd in European amphibian communities, offering another justification for bullfrog eradication programmes that are currently underway or may be considere
    • …
    corecore