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Abstract Invasive species can be a threat to native species in several ways, including 8 

transmitting lethal infections caused by the parasites they carry. However, invasive species 9 

may also be plagued by novel and lethal infections they acquire when invading, making 10 

inferences regarding the ability of an invasive host to vector disease difficult from field 11 

observations of infection and disease. This is the case for the pathogenic fungus 12 

Batrachochytrium dendrobatidis (Bd) in Europe and one invasive host species, the North 13 

American bullfrog Lithobates catesbeianus, hypothesized to be responsible for vectoring 14 

lethal infection to European native amphibians. We tested this hypothesis experimentally 15 

using the alpine newt Ichthyosaura alpestris as our model native host. Our results show that 16 

infected bullfrog tadpoles are effective vectors of Bd. Native adult newts co-housed with 17 

experimentally infected bullfrog tadpoles became Bd infected (molecular and histological 18 

tests). Moreover, the exposed adult newts suffered mortality while the majority of infected 19 

Bullfrog tadpoles survived until metamorphosis. These results cannot resolve the historical 20 

role of alien species in establishing the distribution of Bd across Europe or other regions in 21 

the world where this species was introduced, but they show its potential role as a Bd reservoir 22 

capable of transmitting lethal infections to native amphibians. Finally, our results also suggest 23 

that the removal of infected bullfrogs from aquatic environments may serve to reduce the 24 

availability of Bd in European amphibian communities, offering another justification for 25 

bullfrog eradication programmes that are currently underway or may be considered. 26 
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Introduction 1 

 2 

Invasive, non-native species are considered to be one of the greatest threats to biodiversity 3 

and threaten native species through a variety of mechanisms. The co-introduction of parasites 4 

capable of eliciting significant pathogenesis in naïve native hosts is thought to be one of the 5 

major mechanisms behind biodiversity loss attributable to invasive species (Daszak et al. 6 

2000; Prenter et al. 2004; Crowl et al. 2008). Indeed, parasites that are transported with 7 

invasive species tend to reach equivalent prevalence in native species (Torchin et al. 2003), 8 

sometimes with devastating consequences (Martel et al. 2014; Doddington et al. 2013; Bosch 9 

et al. 2013). However, invasive species may carry significantly reduced parasite diversity 10 

when invading (Torchin et al. 2003) and commonly become infected with parasites that occur 11 

in endemic residents (Colautti et al., 2004; Bürgi and Mills 2014). Invasive species that are 12 

infected with resident parasites can suffer costs exceeding those experienced by the native 13 

host species (Wolfe et al. 2004) or equivalent to those experienced by native species infected 14 

with newly introduced parasites (Heger and Jeschke 2014). The unpredictability of these 15 

relationships means that patterns of parasite infection and disease in native and invasive hosts 16 

do not always indicate which host may be serving as a vector for the parasite. 17 

Batrachochytrium dendrobatidis (Bd), a global fungal pathogen of amphibians, is 18 

presumed to be an invasive parasite in many parts of its range (Farrer et al. 2011). Bd 19 

invasion is commonly attributed to the release of infected, asymptomatic species that have 20 

been displaced as a result of trade (Hanselmann et al. 2004). A prime example is that of the 21 

North American bullfrog Lithobates catesbeianus (Hanselmann et al. 2004). Due to their 22 

ubiquity as a traded species infected with Bd (Bai et al. 2010; Schloegel et al. 2009), their 23 

distribution and a consistent pattern of infection with Bd (Garner et al. 2006), they have been 24 

proposed to be important vectors of Bd into native amphibians. Bullfrogs may contribute to 25 
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maintain Bd in native amphibian community (Peterson and McKenzie 2014), whereas the 1 

distribution of invasive bullfrogs appears as a poor predictor of Bd distributions (Richardson 2 

et al. 2014; Bataille et al. 2013). Native bullfrogs do have the ability to transmit infection to 3 

species that occur within their natural range (Greenspan et al. 2012), invasive bullfrogs 4 

tended to produce a higher number of Bd zoospores relative to native species (Peterson and 5 

McKenzie 2014) but do not appear to sustain infections for prolonged periods of time and can 6 

die from heavy infections (Gervasi et al. 2013).  The evidence that invasive bullfrogs can act 7 

as significant vectors of chytridiomycosis to native hosts is relatively weak. 8 

Bullfrogs have been widely introduced in Europe in an uncoordinated, multinational 9 

effort to establish viable populations for the trade in frog legs (Ficetola et al. 2007). Invasive 10 

bullfrog populations were consistently founded by a small number of adults directly 11 

transported from their native range and much of the current distribution in Europe probably 12 

arose through translocation from these founder populations (Ficetola et al. 2008). This small 13 

number of potential transport vectors is incompatible with the widespread, pervasive 14 

distribution of Bd across Europe (Olson et al. 2013) and the patterns of Bd invasion in areas 15 

of Europe where bullfrogs are absent (Bielby et al. 2013; Bosch et al. 2013; Walker et al. 16 

2008; 2010). Introduced bullfrogs can potentially transmit Bd to native amphibians, but spill-17 

over can be from native hosts to invasive bullfrogs. If this were the case, invasive bullfrogs 18 

would be accruing infection from native hosts, and we would predict that native species 19 

commonly infected with Bd would be relatively tolerant of infection while bullfrogs would 20 

exhibit costs such as the post-metamorphic mortality of bullfrogs experiencing strong 21 

infections in their native range, as described by Gervasi et al. (2013). The possibility does 22 

remain that bullfrogs act as vectors of infection and disease in Europe, and can act as 23 

significant reservoir hosts. Indeed, Bd has been documented infecting bullfrog populations 24 

across Europe (Garner et al. 2006). In this instance, we predict that native European 25 
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amphibians would be susceptible to lethal chytridiomycosis caused by transmission from 1 

infected bullfrogs, while bullfrogs would not exhibit significant costs associated with 2 

exposure to and infection with Bd. 3 

In this paper, we experimentally determine if invasive bullfrogs are significant vectors 4 

of Bd to European amphibians. We cohoused experimentally infected bullfrog tadpoles with 5 

adult native amphibians, in this case, the alpine newt. We selected the alpine newt because it 6 

is known to be infected with Bd across Europe (Zampiglia et al. 2013; Sztatecsny and Glaser 7 

2011) but little is known about its susceptibility to lethal chytridiomycosis. We considered 8 

bullfrog tadpoles as the appropriate life history stage for assessing reservoir status of the 9 

species because tadpoles with prolonged larval periods are commonly cited as significant 10 

reservoirs of infection (Briggs et al. 2010; Walker et al. 2010). We recorded infection status, 11 

determined through molecular diagnostics and histology, burden of infection and survival in 12 

both bullfrog tadpoles and adult alpine newts. For bullfrogs, we measured mortality rates 13 

until the onset of metamorphosis, as significant costs associated with larval infection initially 14 

manifest when metamorphosis is near to completion (Gervasi et al. 2013; Walker et al. 2010; 15 

Garner et al. 2009). 16 

 17 

Materials and methods 18 

 19 

One clutch of American bullfrog (Lithobates catesbeianus) spawn was collected in June 2009 20 

at an artificial pond in Ambarès in southwestern France (44°56’22” N, 0°31’04” E; 20 m 21 

a.s.l.). Eggs were hatched and larvae reared in the laboratory in three plastic containers (400 x 22 

600 x 200 mm) each containing approximately 35 L of aged tap water. Larvae were fed 23 

flaked goldfish food provided ad libitum during this and the subsequent exposure periods (see 24 

below). In May 2010, 30 of the 250 available tadpoles (Gosner stages 26–30; Gosner 1960) 25 
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were selected randomly and examined for evidence of infection by swab-sampling their 1 

mouthparts (swab ref. M01-MW100, Kitvia Co.) and testing DNA extracted from these 2 

swabs using the TaqMan Assay described by Boyle et al. (2004). Because the extraction 3 

reagent is a PCR inhibitor, samples were diluted by a ratio of 1:10 prior to attempted PCR 4 

amplification. For all molecular assessments of infection, amplifications yielding quantitative 5 

scores of 0.1 genomic equivalents (GE; untransformed value) or greater were considered Bd-6 

positive, allowing us to assign individuals as either ‘infected’ or ‘not infected’. 7 

Twenty tadpoles were transferred to plastic containers (240 x 160 x 144 mm) filled 8 

with approximately 2 L of aged tap water and maintained as such until the end of the 9 

experiment as negative controls for infection with Bd. Over the course of the next 20 days, 10 

we individually exposed another 120 of the remaining tadpoles five times to 30,000 11 

zoospores using a Bd culture isolated from a dead, recently metamorphosed Alytes 12 

obstetricans. The dead Alytes was collected at a recurrent A. obstetricans mass mortality site 13 

located in the French Pyrenees where only the global pandemic lineage (Bd-GPL) is known 14 

to occur and was genotyped as such (Farrer et al. 2011; 2013). Before each exposure, 40 of 15 

the 160 mL of water in each tadpole container were replaced and all visible tadpole faeces 16 

removed using a disposable sterile pipette. Seven days after the fifth exposure, all tadpoles 17 

were again swab-sampled and tested for evidence of infection using the qPCR molecular 18 

diagnostic. 19 

At the same time, we collected 40 male alpine newts (Ichthysaura alpestris) from 20 

artificial ponds located on the Bourget-du-Lac campus of the University of Savoie-Mont-21 

Blanc (45°38’30” N, 5°52’02” E; 240 m a.s.l.). Newts (mean mass ± SD = 1.8 ± 0.23 g) were 22 

also housed individually, swab sampled over the fore- and hindlimbs, abdomen and cloaca 23 

and swabs tested for evidence of infection using the qPCR molecular diagnostic. Individual 24 

newts were then housed in 40 plastic containers (240 x 160 x 144 mm) containing 1.5 liters of 25 
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aged tap water. Ten of these experimental units were left as is, containing only a single newt. 1 

We added 3 bullfrog tadpoles to all of the other 30 replicates; 10 with unexposed and 2 

presumably uninfected tadpoles, and 20 with exposed and presumably infected tadpoles. 3 

Tadpoles and newts were cohoused for 15 days at 20.1 ± 1.0°C and on a 16hr/8hr artificial 4 

day/night schedule. Water levels were assessed daily and topped up when needed with aged 5 

tap water. On day 15, tadpoles were removed, water levels reduced by 500 mL and containers 6 

tilted to allow newts to have access to a terrestrial area (a plastic box, 140 x 140 mm, placed 7 

within the experimental unit). While cohoused with tadpoles and during the post-exposure 8 

period, newts were fed chironomid larvae every 48 hours. Newt containers were cleaned 9 

every day with a disposable, sterile plastic pipette to remove feces and food remains. For 29 10 

days after tadpoles were removed we recorded newt mortality and all newts were again swab 11 

sampled after death or as survivors at the end of the experiment. Tadpoles that were cohoused 12 

with newts (1 per replicate involving exposed tadpoles, n = 30, and 2 per unexposed 13 

replicates, n = 20) were rehoused individually in plastic containers as per the negative control 14 

tadpoles. Tadpoles were maintained as such until the onset of metamorphosis (Gosner stage 15 

42; Gosner 1960) and then swab-sampled across the epidermis for evidence of infection. We 16 

switched swab sampling to skin at this stage because tadpoles have shed keratinized 17 

mouthparts which are the target of infection earlier in development, and because 18 

keratinization of the stratum corneum that occurs at this time becomes the new target for Bd 19 

infection. 20 

Dead newts were stored in 70° alcohol. The four newts exposed to Bd infected bullfrog 21 

tadpoles alive at the end of the experiment were sacrificed with an overdose of 10 mL/L of 22 

phenoxyethanol.  Ten cross sections (4 µm) were taken from skin sampled from the interior 23 

proximal part of the hind foot of each newt. The skin was embedded in tissue-teck (Sakura 24 

Fineteck, USA) and frozen at -18°C. Cross sections were cut using a LEICA CM3050 S 25 
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freezing microtome, stained with Ehrlich’s haematoxylin and examined for evidence of 1 

infection with Bd using light microscopy.    2 

Statistical analyses were performed with the Program R (R Development Core Team, 3 

2010). We used log rank tests to test for differences amongst treatment groups for both 4 

bullfrog tadpoles and alpine newts. We also assessed the differences in alpine newt mortality 5 

between the 3 treatments using survival analysis (Kaplan-Meier estimate) with ‘time until 6 

death’ as the response variable. Individuals without a corresponding time until death (i.e., 7 

survived to the end of the experiment, n = 23) were removed from the analysis.  8 

 9 

Results 10 

 11 

Bullfrog tadpole Bd status and survival 12 

 13 

The 30 tadpoles from which unexposed tadpoles were selected for cohousing with newts 14 

(n=10) tested negative for Bd DNA (Table 1). The 60 tadpoles experimentally exposed to Bd 15 

zoospores were comprehensively infected with Bd (mean GE + 1 SD: 58.6 + 32.8) at the start 16 

of the cohousing period with newts (n=20, table 1). Exposed tadpoles that were removed 17 

from experimental replicates all tested positive for infection on day 15 (n = 60, mean GE + 1 18 

SD: 39.6 + 23.3), while those from unexposed replicates did not test positive. Twenty of the 19 

26 tadpoles from the exposed replicates surviving to the end of the experiment also tested 20 

positive (n = 20, mean GE + 1 SD: 49.7 + 29.3), whereas no unexposed tadpoles tested 21 

positive on day 44. 22 

Tadpoles started to metamorphose (Gosner stage 42) on day 70. Only seven tadpoles 23 

did not survive to this date, among them 4 exposed to Bd and cohoused with alpine newt, 2 24 

unexposed to Bd and cohoused with alpine newt, and 1 control (unexposed to Bd and alone). 25 
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Survival of bullfrog tadpoles did not differ across tadpole treatment groups (20 tadpoles 1 

housed alone and the two newt experiment treatments: Fig. 1a; Log rank test, Chi square test 2 

= 1.3, df = 2, p = 0.526). 3 

 4 

Alpine newt Bd status and survival  5 

 6 

All 40 male alpine newts tested negative for Bd before cohousing (Table 1). Newts housed 7 

alone (n=10) or with unexposed bullfrog tadpoles (n=10) for 15 days tested negative for Bd at 8 

the end of the experiment. Alternatively, 14 newts cohoused with infected bullfrog tadpoles 9 

tested positive for infection either at time of death or at the end of the experiment (mean GE 10 

+ 1 SD: 7.6 + 6.2). The remaining 6 newts cohoused with infected bullfrog tadpoles tested 11 

negative for Bd DNA during this experiment. Among the 16 newts cohoused with infected 12 

bullfrog tadpoles which died during the experiment, 11 tested PCR positive for infection. Of 13 

the 4 newts cohoused with infected bullfrog tadpoles that survived, 3 were positive for Bd 14 

(respectively 3.15, 4.4 and 46.4 GE). 15 

Histological examinations were performed on the skin of all the newts which were 16 

exposed to infected bullfrog tadpoles (16 dead newts and the 4 newts alive at the end of the 17 

experiments, table 1). Intracellular thalli and zoosporangia at various stages of maturation 18 

were observed in the 11 newts that died and tested PCR positive for Bd, in 3 of the 5 dead 19 

newts that tested PCR negative for Bd, and in the 3 newts PCR positive for Bd which 20 

survived to the end of the experiment. One newt that survived and PCR tested negative for 21 

Bd also had no observable thalli and zoosporangia.  22 

Significant variation of mortality occurred among newt treatments: 16 of 20 newts 23 

exposed to Bd-infected bullfrog tadpoles were dead by the end of the experiment, while only 24 

one of the 20 newts that were not exposed to Bd or tadpoles died. Newts began dying on day 25 
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26, 9 days after bullfrog tadpoles were removed (Fig. 1b). Cohousing newts with infected 1 

tadpoles significantly affected the mortality rate (Log rank test, Chi square = 21.7, df = 2, p = 2 

1.91 x 10-05). At day 30, survival of newts cohoused with infected tadpoles was reduced by 3 

25 % when compared to newts cohoused with uninfected tadpoles or newts reared alone 4 

(Table 2). At day 38, survival of newts cohoused with infected tadpoles was reduced by 80 % 5 

compared to newts cohoused with uninfected tadpoles and 70 % compared to those reared 6 

alone (Table 2). 7 

 8 

Discussion 9 

 10 

Genetic and genomic data have been used to describe geographically widespread Bd and 11 

endemic Bd lineages (Farrer et al. 2011; 2013). The contact between allopatric populations of 12 

Bd could allow recombination, generation of virulent lineages and lead to contemporary 13 

amphibian disease emergence (Farrer et al. 2011). Increased sampling and analysis confirmed 14 

that Bd is composed of multiple divergent lineages, but which appear endemic in some parts 15 

of its range and novel (i.e. emerging) in others (Rosenblum et al. 2013). Perhaps more 16 

relevant to this study, patterns of mutation, recombination and aneuploidy make resolving 17 

historical relationships of isolates, even within lineages, problematic (Farrer et al. 2013). 18 

Because of this, it is questionable if the relationship between invasive amphibian hosts and 19 

history of Bd invasion can ever be clearly elucidated. 20 

Nevertheless, introducing infected hosts of any kind to naïve amphibian communities 21 

increases host density, elevating transmission rates (Rachowicz and Vredenburg 2004), and 22 

prevalence of infection which may be vectored into susceptible species. The American 23 

bullfrog is a good candidate to fulfil this role: it has been globally introduced (review in 24 

Ficetola et al. 2007) and carries Bd in native (Ouellet et al. 2005) and introduced populations 25 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 
 

in Asia (Bai et al. 2010), Europe (Garner et al. 2006), North (Peterson and McKenzie 2014) 1 

and South America (Hanselman et al. 2004; Schloegel et al. 2010). Direct evidence of the 2 

role of bullfrog as a reservoir of local Bd lineages and/or introduction of allopatric lineages to 3 

native amphibian communities are lacking, but in Colorado, amphibian communities invaded 4 

by non-native bullfrogs were more likely to support Bd infected individuals (Peterson and 5 

McKenzie 2014). The transmission of Bd from native American bullfrog juveniles to 6 

syntopic wood frog tadpoles (Lithobates sylvaticus) was shown experimentally by Greenspan 7 

et al. (2012). Extending on their work, our experiment shows that infected and non-native 8 

bullfrog tadpoles can transmit Bd to adult alpine newts under experimental conditions. Newts 9 

exposed to infected bullfrog tadpoles in our study readily developed infections in a matter of 10 

days and sustained these infections for weeks after exposure without any need for re-11 

exposure beyond the 15 days of cohousing. In the wild, bullfrog populations are well-12 

established in France and geographically overlap with native alpine newt populations in one 13 

region (Ficetola et al. 2007). Temporally the potential for spill over exists, as breeding by 14 

adult newts coincides with the presence of bullfrog tadpoles for a period of months (Michelin 15 

et al. 2014) and tadpoles we experimentally exposed were still infected 70 days after initial 16 

exposure, with no significant decrease in infection burden. This was strong enough to 17 

transmit infection to at least of 70% of the cohoused newts. Newly metamorphosed bullfrogs 18 

are not always an efficient reservoir species for Bd and may experience heavy mortality 19 

(Gervasi et al. 2013), but bullfrog metamorphs in our study did not suffer mortality from this 20 

virulent Bd-GPL lineage. Range overlap, persistent and strong burdens of infection and high 21 

prevalence, in this case across life history stages: these are all key traits of a competent 22 

vector, as transmission is more likely when infectious particles are available for transmission 23 

over a longer time span (Murray et al. 2009). 24 
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In nature newts commonly leave water and stay on land for significant periods of time. 1 

Behavioural avoidance of aquatic zoospores has been described in another species (e.g. 2 

McMahon et al. 2014) and our experiment offered no opportunity for newts to escape from 3 

the water. The aquatic environment is important for transmission of zoospores, and the heavy 4 

infections consistently generated in our study by cohousing with bullfrog tadpoles were of 5 

similar strength to burdens estimated from newts captured from aquatic environments in the 6 

wild at sites where newts occur at high densities (Garner et al. 2005). Bullfrogs have not been 7 

detected at the newt study sites sampled by Garner et al. (2005) and mortality of alpine newts 8 

attributable to chytridiomycosis has never been reported. The impact of host community 9 

structure on probability of infection and strength of infection with Bd is a common theme in 10 

amphibian host/chytrid systems, where increased density of hosts harbouring the heaviest 11 

infections is expected to elicit greater prevalence and heavier infections (Searle et al. 2011; 12 

but see Bielby et al. 2015). Infections of tadpoles were far stronger than newts in our study, 13 

which may go some way towards explaining why experimental newts experienced significant 14 

mortality while newts occupying ponds lacking a heterospecific reservoir exhibiting stronger 15 

infections appear not to. Further study of the relationships between habitat choice, host 16 

community composition and susceptibility of alpine newts to infection and chytridiomycosis 17 

is certainly warranted. 18 

Some newts that died did not exhibit detectable infection using either diagnostic. 19 

Several studies have reported increased risk of mortality during prolonged exposure to Bd 20 

even with no evidence of infection at time of death (Luquet et al. 2012; Garner et al. 2009). 21 

Resisting infection with Bd is probably costly, potentially increasing the mortality risk of 22 

these individuals. But not in all cases: of the four survivors, at least 3 exhibited significant 23 

levels of infection. One hypothesis for this could be inter-individual variation in immune 24 

defence. Innate immunity in the form of skin antimicrobial peptides secretions can act as first 25 
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line of defence against Bd, and has been shown to allow tolerance of infection (Woodhams et 1 

al. 2007; Rollins-Smith 2009; Ramsey et al. 2010). Whatever component of immunity may be 2 

responsible for tolerance or resistance, repeated exposure to Bd has been shown immunize 3 

against subsequent costs (McMahon et al. 2014, but see Cashings et al. 2013. This seems 4 

unlikely in our case as we have never detected infection in the source population for the 5 

newts we used (102 adults tested with qPCR, C. Miaud, unpublished data) and none of our 6 

experimental animals tested positive before exposure. These are strong indications that the 7 

alpine newts used in the experiment were Bd naïve. 8 

These experimental findings are the first evidence of death attributable to exposure to 9 

and infection with Bd in alpine newts, adding to an ever-growing list of European amphibian 10 

species that may be deleteriously affected through interactions with this fungus (Baláž et al. 11 

2014; Bosch et al. 2013; Garner et al. 2013; Luquet et al. 2012; Bielby et al. 2009; Garner et 12 

al. 2009; Bosch et al. 2001). Additional surveillance for Bd-related newt mortality in the wild 13 

is called for to investigate potential disease-associated decline under natural conditions. 14 

 15 

Conclusion 16 

 17 

We conclude from our experiment that invasive bullfrogs are effective reservoirs of Bd, 18 

capable of transmitting infections to native hosts. Infections with the Bd-GPL lineage 19 

transmitted by invasive bullfrogs can be sustained for weeks after initial exposure and have 20 

the capacity to cause significant mortality in native species. Although we cannot resolve the 21 

debate regarding the role invasive hosts have played in introducing Bd to Europe, we do 22 

conclude that infected, invasive bullfrog tadpoles will increase the likelihood that infection 23 

with Bd will be maintained in a European amphibian community (Spitzen-van der Sluijs et al. 24 

2014). Experimental results (this study) do not always reflect field conditions, but spill-over 25 
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from bullfrog tadpoles to native European amphibians has the potential to drive mortality in 1 

native species. Removal of invasive bullfrogs as a conservation strategy has been adopted in 2 

several European countries based on the conclusion that bullfrogs can cause native species 3 

declines due to competition and predation (Kupferberg 1997; Lawler et al. 1999). Our study 4 

further justifies these efforts. Even if removal may not eliminate infections in native hosts, 5 

any reduction in density of infected hosts capable of transmitting to susceptible hosts should 6 

reduce the likelihood of infections reaching potentially lethal thresholds (Peterson and 7 

McKenzie 2014). Exposure duration, zoospore load and virulence can dictate the severity of 8 

the costs associated with exposure and infection (e.g. Briggs et al. 2010) and the removal of 9 

infected bullfrogs has a strong likelihood of reducing the impact of Bd on other, native 10 

susceptible host species. 11 
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Fig. 1. Survival curves for American bullfrog tadpoles Lithobates catesbeianus tadpoles (a) 

and alpine newt Ichthyosaura alpestris (b). For both figures, animals housed singly and not 

exposed to the fungus Batrachochytrium dendrobatidis (Bd) are represented by the dotted 

line, animals cohoused with uninfected animals are represented by the solid line and 

cohoused animals where tadpoles were infected with Bd are represented by broken line. 
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Fig. 1b 
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Table 1 Design and results of the cross contamination experiment, the co-housing of alpine newt Ichthyosaura alpestris with American bullfrog 

tadpoles Lithobates catesbeianus infected by the fungus Batrachochytrium dendrobatidis. 

 

  qPCR test 

Before the experiment Bd+ Bd- 

Alpine newts alone (n=40)  0 40 

Bullfrog tadpoles alone (n=20) 0  20 

Bullfrog tadpoles Bd+ (n=60) 60  0 

Bullfrog tadpoles Bd- (n=30) 0 30 

 qPCR test Histological test 

During the experiment Bd+ Bd- Bd+ Bd- 

Alpine newt alone (n=10) 0 10 - - 

Alpine newt with Bd- tadpoles (n=10) 0 10 - - 

Alpine newts with Bd+ tadpoles (n=20) overall 14 6 17 3 

Alpine newts with Bd+ tadpoles which died (n=16) 11 5 14 2 

Alpine newts with Bd+ tadpoles which survived (n=4)  3 1 1 2 

  

 

Bullfrog tadpoles Bd+ = tadpole experimentally infected with Bd and co-housed with alpine newts. Bullfrog tadpoles Bd- = tadpole Bd- and co-

housed with alpine newts. Alpine newt with Bd- or Bd+ tadpoles = 1 alpine newt adult is co-housed with 3 American Bullfrog tadpoles. 
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Table 2 Survival of alpine newts Ichthyosaura alpestris co-housed with American bullfrog 

tadpoles Lithobates catesbeianus infected by the fungus Batrachochytrium dendrobatidis. 

 

Treatment = newts with Bd positive tadpoles  

 Time  n n death  survival  std.err  lower 95% CI upper 95% CI 

   26     20        1      0.95   0.0487 0.8591 1.000 

   28 19        3     0.80   0.0894 0.6426  0.996 

   30 16        1      0.75 0.0968 0.5823 0.966 

   32 15 1 0.70 0.1025 0.5254 0.933 

   33      14 1 0.65 0.1067 0.4712 0.897 

   36      13 1 0.60 0.1095 0.4195 0.858 

38     12 8 0.20 0.0894 0.0832 0.481 

12 dead in this treatment  

Treatment = newt as control (newt alone) 

 Time n n death survival std.err lower 95% CI  upper 95% CI 

 30 10 0 1.0 - - -  

 33      10 1.0 0.90 0.0949        0.7320  1.0000 

 38 10 1.0 0.9 0.0949 0.7320 1.0000 

1 dead in the control at day 33 

Time = days since the beginning of the experiment, n = number of alive alpine newts, n death = 

number of dead alpine newt along the last 24h. 
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