7 research outputs found

    Automated Shuttles as Traffic Calming: Evidence from a Pilot Study in City Traffic

    Get PDF
    Discourse about the real-world effects of automated vehicles has intensified over the last decade, but few observational studies have been made examining their integration in real traffic. This research is based on the dataset prepared by Beauchamp et al. in [1] where video footage from two pilot projects involving automated shuttles in Montreal and Candiac in 2019 was analyzed to compute safety indicators from road user trajectories. The study showed that automated shuttles have safer interactions with other road users compared to human drivers following the same trajectories. Yet, this may not be the only characteristic of automated shuttles. These vehicles are notoriously slow, 10 to 15 km/h slower than human-driven cars in city traffic [1], which on city streets is bound to influence other road users, in particular following cars. lt is therefore hypothesized that automated shuttles may have a traflic calming effect, slowing other motorized vehicles [2]. Slower speed and the predictability of automated shuttles, obeying the rules of the road and yielding more willingly to vulnerable road users (pedestrians and cyclists) may also have an impact on these users' behavior [3]: for example, cyclists may pass the shuttle, pedestrians may cross outside of crosswalks. The present study aims to explore the potential effects of automated shuttles, with their slower spceds and more predictable behavior, on the behavior of other road users. [from Introduction

    Metabolite Composition of Paper Birch Buds after Eleven Growing Seasons of Exposure to Elevated CO2 and O-3

    Get PDF
    Research Highlights: Long-term exposure of paper birch to elevated carbon dioxide (CO2) and ozone (O-3) modified metabolite content of over-wintering buds, but no evidence of reduced freezing tolerance was found.Background and Objectives: Atmospheric change may affect the metabolite composition of over-wintering buds and, in turn, impact growth onset and stress tolerance of perennial plant species in spring. Materials and Methods: Low molecular weight compounds of paper birch (Betula papyrifera) buds, including lipophilic, polar and phenolic compounds were analyzed, and freezing tolerance (FT) of the buds was determined prior to bud break after 11 growing seasons exposure of saplings to elevated concentrations of CO2 (target concentration 560 mu L L-1) and O-3 (target concentration 1.5 x ambient) at the Aspen FACE (Free-Air CO2 and O-3 Enrichment) facility. Results: The contents of lipophilic and phenolic compounds (but not polar compounds) were affected by elevated CO2 and elevated O-3 in an interactive manner. Elevated O-3 reduced the content of lipids and increased that of phenolic compounds under ambient CO2 by reallocating carbon from biosynthesis of terpenoids to that of phenolic acids. In comparison, elevated CO2 had only a minor effect on lipophilic and polar compounds, but it increased the content of phenolic compounds under ambient O-3 by increasing the content of phenolic acids, while the content of flavonols was reduced. Conclusions: Based on the freezing test and metabolite data, there was no evidence of altered FT in the over-wintering buds. The impacts of the alterations of bud metabolite contents on the growth and defense responses of birches during early growth in spring need to be uncovered in future experiments.</div

    The interplay between ozone and urban vegetation – BVOC emissions, ozone deposition, and tree ecophysiology

    Get PDF
    Tropospheric ozone (O3) is one of the most prominent air pollution problems in Europe and other countries worldwide. Human health is affected by O3 via the respiratory as well the cardiovascular systems. Even though trees are present in relatively low numbers in urban areas, they can be a dominant factor in the regulation of urban O3 concentrations. Trees affect the O3 concentration via emission of biogenic volatile organic compounds (BVOC), which can act as a precursor of O3, and by O3 deposition on leaves. The role of urban trees with regard to O3 will gain further importance as NOx concentrations continue declining and climate warming is progressing—rendering especially the urban ozone chemistry more sensitive to BVOC emissions. However, the role of urban vegetation on the local regulation of tropospheric O3 concentrations is complex and largely influenced by species-specific emission rates of BVOCs and O3 deposition rates, both highly modified by tree physiological status. In this review, we shed light on processes related to trees that affect tropospheric ozone concentrations in metropolitan areas from rural settings to urban centers, and discuss their importance under present and future conditions. After a brief overview on the mechanisms regulating O3 concentrations in urban settings, we focus on effects of tree identity and tree physiological status, as affected by multiple stressors, influencing both BVOC emission and O3 deposition rates. In addition, we highlight differences along the rural-urban gradient affecting tropospheric O3 concentrations and current knowledge gaps with the potential to improve future models on tropospheric O3 formation in metropolitan areas

    Automated Shuttles as Traffic Calming: Evidence from a Pilot Study in City Traffic

    No full text
    Discourse about the real-world effects of automated vehicles has intensified over the last decade, but few observational studies have been made examining their integration in real traffic. This research is based on the dataset prepared by Beauchamp et al. in [1] where video footage from two pilot projects involving automated shuttles in Montreal and Candiac in 2019 was analyzed to compute safety indicators from road user trajectories. The study showed that automated shuttles have safer interactions with other road users compared to human drivers following the same trajectories. Yet, this may not be the only characteristic of automated shuttles. These vehicles are notoriously slow, 10 to 15 km/h slower than human-driven cars in city traffic [1], which on city streets is bound to influence other road users, in particular following cars. lt is therefore hypothesized that automated shuttles may have a traflic calming effect, slowing other motorized vehicles [2]. Slower speed and the predictability of automated shuttles, obeying the rules of the road and yielding more willingly to vulnerable road users (pedestrians and cyclists) may also have an impact on these users' behavior [3]: for example, cyclists may pass the shuttle, pedestrians may cross outside of crosswalks. The present study aims to explore the potential effects of automated shuttles, with their slower spceds and more predictable behavior, on the behavior of other road users. [from Introduction

    Automated Shuttles as Traffic Calming: Evidence from a Pilot Study in City Traffic

    Get PDF
    Discourse about the real-world effects of automated vehicles has intensified over the last decade, but few observational studies have been made examining their integration in real traffic. This research is based on the dataset prepared by Beauchamp et al. in [1] where video footage from two pilot projects involving automated shuttles in Montreal and Candiac in 2019 was analyzed to compute safety indicators from road user trajectories. The study showed that automated shuttles have safer interactions with other road users compared to human drivers following the same trajectories. Yet, this may not be the only characteristic of automated shuttles. These vehicles are notoriously slow, 10 to 15 km/h slower than human-driven cars in city traffic [1], which on city streets is bound to influence other road users, in particular following cars. lt is therefore hypothesized that automated shuttles may have a traflic calming effect, slowing other motorized vehicles [2]. Slower speed and the predictability of automated shuttles, obeying the rules of the road and yielding more willingly to vulnerable road users (pedestrians and cyclists) may also have an impact on these users' behavior [3]: for example, cyclists may pass the shuttle, pedestrians may cross outside of crosswalks. The present study aims to explore the potential effects of automated shuttles, with their slower spceds and more predictable behavior, on the behavior of other road users. [from Introduction

    Chronic Drought Decreases Anabolic and Catabolic BVOC Emissions of Quercus pubescens in a Mediterranean Forest

    Get PDF
    International audienceBiogenic volatile organic compounds (BVOC) emitted by plants can originate from both anabolism (metabolite production through anabolic processes) and catabolism (metabolite degradation by oxidative reactions). Drought can favor leaf oxidation by increasing the oxidative pressure in plant cells. Thus, under the precipitation decline predicted for the Mediterranean region, it can be expected both strong oxidation of anabolic BVOC within leaves and, as a result, enhanced catabolic BVOC emissions. Using an experimental rain exclusion device in a natural forest, we compared the seasonal course of the emissions of the main anabolic BVOC released by Q. pubescens (isoprene and methanol) and their catabolic products (MACR+MVK+ISOPOOH and formaldehyde, respectively) after 3 years of precipitation restriction (-30% of rain). Thus, we assume that this repetitive amplified drought promoted a chronic drought. BVOC emissions were monitored, on-line, with a PTR-ToF-MS. Amplified drought decreased all BVOC emissions rates in spring and summer by around 40-50 %, especially through stomatal closure, with no effect in autumn. Moreover, ratios between catabolic and anabolic BVOC remained unchanged with amplified drought, suggesting a relative stable oxidative pressure in Q. pubescens under the water stress applied. Moreover, these results suggest a quite good resilience of this species under the most severe climate change scenario in the Mediterranean region
    corecore